Viva voce introductory presentation

Verified compilation of a purely functional language
to a realistic machine semantics

Hrutvik Kanabar, University of Kent
Wednesday 13th September

Introduction

Contributions

Two contributions in general purpose, end-to-end verified compilation

PureCake Realistic machine semantics
an end-to-end verified compiler for a compiler correctness theorems
purely functional, Haskell-like backed by an official instruction set
language specification

Connected by

(an end-to-end verified implementation of a subset of ML)

Built using HOL4

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 1/29

Building on CakeML

From a purely functional language to a realistic machine semantics

Official Arm
. specification
compile compile
prog, —— +—— prog. ——— pProgarm

%
I O, ro,
[prog,], «———— [prog-]. o LProgamlm —— [Progam lam
J
PureCake

Realistic machine
semantics

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September

2/29

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

Structure of PureCake

front end

back end

ation

Concrete syntax

N

PURELANG
ce
pure call-by-name
(subst. semantics)

THUNKLANG
pure call-by-value
(subst. semantics)

- @
(: N
ENvVLANG

pure call-by-value

(env. semantics)
0

STATELANG
impure call-by-value

(env. semantics)

Next slide: simplified diagram

) lex, parse, desugar

> simplify
) demand analysis

Frontend accepts PurelLang

translate to call-by-value;
introduce delay/force;
avoid delay (force (var_))

)

) simplify forces
) reformulate to simplif

)

gt \-abstractions out

Three intermediate languages,

each with a specific focus

compile delay
10

" - unit inwards

make every A-abstraction
bind a variable

P
-~
Caatoms)2

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September

Targets & CakeML

ikaaslai OO,

“itach preamble

3/29

Simplified structure of PureCake

lexing, binding group type demand
PureLang —— L — . —_—. - n
parsing analysis inference analysis

front end /

[ThunkLang ——— EnvLang ——— Statelang]—>

back end

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 4/29

A purely functional language
Source language

Features inspired by Haskell

numbers :: Integer -> [Integer] . o
laziness — infinite data

numbers n = n : numbers (n + 1)

main :: 10 O pure by default, monads for:
main = do

n <- readInt -- read from stdin = sequencing

let facts = take n factorials = stateful conwputations

app (\i -> print $ toString i) facts

. 1/0

Single I0 monad for arrays, exceptions, and 1/O (via FFI calls)

Also: indentation-sensitivity, do notation, mutual recursion, ...

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 5/29

Formal syntax

A tale of two ASTs... separate implementation and verification

desugar
ce > €
compiler expressions semantic expressions
= higher-level = |ower level
= used in implementation = used for verification: ground

truth for semantics

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 6/29

Operational semantics

Operational semantics in layers:
1. Weak-head evaluation: call-by-name, functional big-step
eval!, e = wh
2. Lift to unclocked evaluation using classical quantification
eval,, e = wh
3. Stateful interpretation of I0 operations

(wh, &, o)) : (g, , p) itree

Finally, [e] £ (eval,, e, ¢, @)

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 7/29

Mechanised equational reasoning

Mechanise untyped applicative bisimulation, = [Abramsky, 1990]
Proved congruent via Howe's method [Howe, 1996], i.e.

bisimilar sub-expressions = bisimilarity

Definitions:

.) contextual
a-equivalence [-equivalence .
equivalence
/
€1 =4 & (Ax.e1) e =g er[=2/x] el ~ &

Derived results:

€1 =a €2 €1 =45 €2

e —_— e = e < €~ &
~Y ~Y

€1 = €2 €1 = €

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 8/29

Type system

Standard Hindley-Milner rules... with an unusual soundness proof
“preservation” (subject reduction) does not hold

Proof strategy:

= Define an alternative syntax for typing
= Prove subject reduction by construction

= Use equational theory to bridge the gap to original syntax

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 9/29

A purely functional language

Compiler front end

Indentation-sensitive parsing expression grammar (PEG):

PEG + [Adams POPL13]

R1 yR2 R
N XRi xR . XRo

where R € {=, >, >, U}

Parsing algorithm verified to terminate on all inputs

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 10/29

Binding group analysis

Parsing x=w+ty ? x=w+ty
=0 w=0
main in main

Analyse dependencies W @
Pseudo-topological sort @

let w = 0 in
Transform code + tidy let recx =w+7y;y=x+1

in main

Verified entirely within equational theory

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 11/29

Sound constraint-based type inference

Two-phases: generate all constraints — solve constraints

Subset of Helium's TOP framework [Heeren et. al., Haskell 2003]

= Open to high-quality error messages

= Path to various Haskell 98 features

Soundness theorem:

infer ce succeeds
— ce Fpop ¢s and cs solveable

= [kFce:T

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 12/29

Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n =
if ... then acc else fact (acc * n) (n - 1)
Verified with an alternative equational theory, ~ [Sergey et. al., 2014]:

ll-typed =— =, = coincid
stuck ~ diverged ~ 1 but e ype. . Com_CI €
seg-prefixing preserves typing

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September

13/29

A purely functional language

Compiler back end

Methodology — implementation vs. verification

Prior work: (such as CakeML)

= Define implementation function: transform : e — e

= Verify: wf e = [transform e] = [e]

This work:
eR ¢ compile ce = ce’
syntactic relations code transformation
= for verification = for implementation
= an implementation envelope = must fit in relation envelope

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 14/29

Methodology — workflow

Define and verify R: e R e = [e] =[¢€]
Define compile : ce — ce

Verify wf ce = (desugar ce) R (desugar (compile ce))

> W o=

Compose theorems:
wf ce = [desugar ce] = [desugar (compile ce) |

5. Integrate into compiler, discharge wf ce

Separation of concerns for modularity and ease-of-verification

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 15/29

Intermediate languages

ThunkLang EnvLang
introduce pure thunks introduce environments
= compile to = semantics uses
call-by-value environments
= remove harmful code = prove correctness of
patterns reformulation

= optimisation around
thunks

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September

StatelLang
introduce state

CESK semantics

compile I0
operations

share thunk values
statefully

optimise artefacts

16/29

A purely functional language

Connection with CakeML

Oracles vs. ITrees

Reconciling differing semantic styles

k(al) Vis 01 /(1
A A i Y
- (o1) & (o2) o Vis o k - Vis 03 ko . ..

linear oracles: semanticsa e = tr branching ITrees: [e] = Vis ...

= Verified | Tree semantics: [e]- 4 tr < semanticsp e = tr

= New compiler correctness:
cakeml| e = Some code

code in memory of machine

[machine |\ prunes [e]

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 17/29

End-to-end correctness

purecake str = Some ast
cakeml ast. = Some code

code in memory of machine

exists ce such that
frontend str = Some (ce, -)

[machinem prunes [[desugar ce [pure

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 18/29

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness

Realistic machine semantics for CakeML

Unofficial L3 Official Arm
specification specification
l l
: extract : extract
| |
| |
machine code N v
semantics in HOL4: M refines Ak_m

[[prog]] S [[progArm]]l\/l T [[progArmﬂArm

refines refines

Realistic machine
semantics

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 19/29

A realistic machine semantics
Arm ISA specifications

ISA specification languages

DSLs to specify the ISA abstraction
i.e. an envelope of permitted processor implementations

= Machine-readable: parsing, type-checking, simulation, modelling,
verification, . ..
= First order, imperative languages with common features:

= static typing + type inference
= strong bit vector support
= scattered functions

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 20/29

DSLs for Arm specifications

ASL Sail L3
for Arm documentation one size fits all state of art for ITP
= originally Arm-internal = developed in academia = developed in academia
pseudocode = ASL front end, many = HOL4 and lIsabelle/HOL
= source of (near-)truth back ends back ends
= official public releases = well-exercised = designed for ITP +

well-exercised

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 21/29

Extracting an official specification to HOL4

ASL ——— Sail ———— Lem ————— HOL4

asl_to_sail sail -lem

Result: Armv8.6 in HOL4

imperative declarations monadic definitions
bitvector built-ins derived operations
primitive operations become implemented operations
liquid dependent types simple polymorphic types
scattered functions monolithic definitions

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 22/29

A realistic machine semantics

Semantics preservation

Modifying the specification

Adapting to proofs of semantics preservation

Monad Address translation
avoid set-based non-determinism in stub out as an identity, update physical
favour of Hilbert choice addresses (52-bit — 64-bit)
modify hand-written libraries rely on Sail
Trust???

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 23/29

Specification size

Character counts:

53 k 4,200 k

Armv8 in L3 Armv8 in ASL
70 k 12,200 k
Armv8 in HOL4 via L3 Armv8 in HOL4 via Sail

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 24/29

Specification complexity

Long extraction pathway produces non-idiomatic specification

ASL ——— Sail ———— Lem ————— HOL4

asl_to_sail sail -lem

Difficult to inspect or interact with:

monadic bloat large monolithic definitions
non-idiomatic operations poor in-logic evaluation
lack of instruction AST translation artefacts

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 25/29

Taming the specification

Interactively abstract to theorem-prover-friendly L3

Per opcode, prove a simulation:

3 Run (Decode opcode) 13/

state_rel H ‘

state_rel

/ I
as ExecA64 opcode as

with some fixed system register bits in asl, asl’

Once and for all proof, not tied to CakeML

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 26/29

Instructions verified

Instruction class

Assembly shorthands

move wide operations
bit field moves
logical operations*!
addition /subtraction*
addition /subtraction with carry
division
multiply with addition/subtraction
multiply high
conditional compare*
conditional select
branch immediate (call/jump)
conditional branches
branch register (jump)
register extract
address calculation

byte/register loads/stores*

*For immediate operands. TFor shifted register operands.

MOVK, MOVN, MOVZ
BFM, SBFM, UBFM
AND[S], BIC[S], EON, EOR, ORN, ORR
ADD(s], SUB(S]
ADC[s], SBC([s]
SDIV, UDIV
MADD, MSUB
SMULH, UMULH
CCMN, CCMP
iL, CSINC, CSINV, CSNEG
B, BL
B.COND
BR
EXTR
ADR, ADRP
LD[U|R, LD[U|R[S]B, ST[U]R, ST[U]|RB

*Scaled 12-bit unsigned immediate offset and unscaled 9-bit signed immediate offset addressing modes.

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September

27/29

A realistic machine semantics

Compiler correctness

Context: CakeML'’s support for multiple targets

Design choices: target-agnostic and realistic

= LablLang/Asm: generic assembly-like intermediate language
= Target-agnostic semantics which models execution environment

= Instruction execution steps: next trgt, = trgt, ;
= Interference between successive instructions: ¢1, ¢p, ...
= Projection 7 of processor state always preserved

next

i.e. trgty trgty = trgt’l —= 000 where trgt'l =T trgty

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 28/29

Lifting to CakeML compiler correctness

Compiler correctness factored to a core proof obligation

next_asm instr
asmg asmy

target_state_rel

target_state_rel ‘

trgty = trgt; —— trgt] =5 0 D9 prgr 1 trgt!,

Proof strategy

= Replay existing proof for L3 specification
= Step through ASL states alongside by applying simulation result

= Carefully manage interference to preserve invariants

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 29/29

A purely functional language A realistic machine semantics
Source language Arm ISA specifications
Compiler front end Semantics preservation
Compiler back end Compiler correctness

Connection with CakeML

	Introduction
	A purely functional language
	Source language
	Compiler front end
	Compiler back end
	Connection with CakeML

	A realistic machine semantics
	Arm ISA specifications
	Semantics preservation
	Compiler correctness

