
Viva voce introductory presentation
Verified compilation of a purely functional language
to a realistic machine semantics

Hrutvik Kanabar, University of Kent
Wednesday 13th September



Roadmap

Introduction

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness



Contributions

Two contributions in general purpose, end-to-end verified compilation

PureCake
an end-to-end verified compiler for a

purely functional, Haskell-like
language

Realistic machine semantics
compiler correctness theorems

backed by an official instruction set
specification

Connected by CakeML
(an end-to-end verified implementation of a subset of ML)

Built using HOL4

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 1/29



Building on CakeML

From a purely functional language to a realistic machine semantics

CakeMLPureCake Realistic machine
semantics

prog progArm
compile

q
prog

y
J progArm KMrefines

progp
compile

q
progp

y
p refines

J progArm KArmrefines

Official Arm
specification

extract

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 2/29



Roadmap

Introduction

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness



Structure of PureCake

Language Compiler implementation

Concrete syntax

PureLang
ce

pure call-by-name
(subst. semantics)

ThunkLang
pure call-by-value
(subst. semantics)

EnvLang
pure call-by-value
(env. semantics)

StateLang
impure call-by-value

(env. semantics)

CakeML source

lex, parse, desugar

split letrecs; simplify
type inference
simplify
demand analysis

translate to call-by-value;
introduce delay/force;
avoid delay (force (var ))
lift λ-abstractions out
of lets/letrecs

simplify forces
reformulate to simplify
compilation to StateLang

compile delay/force and
IO monad to stateful ops

push · unit inwards

make every λ-abstraction
bind a variable

translate to CakeML;
attach preamble

front end
back end

Next slide: simplified diagram

Frontend accepts PureLang

Three intermediate languages,
each with a specific focus

Targets CakeML

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 3/29



Simplified structure of PureCake

PureLang binding group
analysis

lexing,
parsing

type
inference

demand
analysis

front end

EnvLangThunkLang StateLang

back end

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 4/29



Roadmap

Introduction

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness



Features inspired by Haskell

numbers :: Integer -> [Integer]
numbers n = n : numbers (n + 1)

main :: IO ()
main = do

n <- readInt -- read from stdin
let facts = take n factorials
app (\i -> print $ toString i) facts

laziness → infinite data

pure by default, monads for:
• sequencing
• stateful computations
• I/O

Single IO monad for arrays, exceptions, and I/O (via FFI calls)

Also: indentation-sensitivity, do notation, mutual recursion, ...

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 5/29



Formal syntax

A tale of two ASTs... separate implementation and verification

ce
compiler expressions

• higher-level
• used in implementation

e
semantic expressions

• lower level
• used for verification: ground

truth for semantics

desugar

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 6/29



Operational semantics

Operational semantics in layers:

1. Weak-head evaluation: call-by-name, functional big-step

evalnwh e = wh

2. Lift to unclocked evaluation using classical quantification

evalwh e = wh

3. Stateful interpretation of IO operations

L wh, κ, σ M : (ε, α, ρ) itree

Finally, J e K def= L evalwh e, ε, ∅ M

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 7/29



Mechanised equational reasoning

Mechanise untyped applicative bisimulation, ∼= [Abramsky, 1990]

Proved congruent via Howe’s method [Howe, 1996], i.e.

bisimilar sub-expressions =⇒ bisimilarity

Definitions:

α-equivalence β-equivalence contextual
equivalence

e1 =α e2 (λx . e1) ·e2 =β e′
1[e2/x] e1 ∼ e2

Derived results:
e1 =α e2

e1 ∼= e2

e1 =β e2

e1 ∼= e2
e1 ∼= e2 ⇐⇒ e1 ∼ e2

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 8/29



Type system

Standard Hindley-Milner rules... with an unusual soundness proof

“preservation” (subject reduction) does not hold

Proof strategy:

• Define an alternative syntax for typing
• Prove subject reduction by construction
• Use equational theory to bridge the gap to original syntax

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 9/29



Roadmap

Introduction

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness



Parsing

Indentation-sensitive parsing expression grammar (PEG):

PEG + [Adams POPL13]

N → XR1
1 XR2

2 . . . XRn
n

where R ∈ { =, >, ≥, U }

Parsing algorithm verified to terminate on all inputs

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 10/29



Binding group analysis

Parsing

Analyse dependencies

Pseudo-topological sort

Transform code + tidy

z = 42
y = x + 1
x = w + y
w = 0
main

−→

let rec z = 42
y = x + 1
x = w + y
w = 0

in main

w
x

y
z

w x, y z

let w = 0 in
let rec x = w + y ; y = x + 1

in main

Verified entirely within equational theory
Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 11/29



Sound constraint-based type inference

Two-phases: generate all constraints −→ solve constraints

Subset of Helium’s Top framework [Heeren et. al., Haskell 2003]

• Open to high-quality error messages
• Path to various Haskell 98 features

Soundness theorem:

infer ce succeeds
=⇒ ce ⊢Top cs and cs solveable
=⇒ Γ ⊢ ce : τ

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 12/29



Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n =
if ... then acc else fact (acc * n) (n - 1)

Verified with an alternative equational theory, ≈ [Sergey et. al., 2014]:

stuck ≈ diverged ≈ ⊥ but well-typed =⇒ ≈, ∼= coincide
seq-prefixing preserves typing

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 13/29



Roadmap

Introduction

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness



Methodology — implementation vs. verification

Prior work: (such as CakeML)

• Define implementation function: transform : e → e
• Verify: wf e =⇒ J transform e K = J e K

This work:

e R e ′

syntactic relations

• for verification
• an implementation envelope

compile ce = ce ′

code transformation

• for implementation
• must fit in relation envelope

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 14/29



Methodology — workflow

1. Define and verify R: e R e′ =⇒ J e K = J e′ K

2. Define compile : ce → ce
3. Verify wf ce =⇒ (desugar ce) R

(
desugar (compile ce)

)
4. Compose theorems:

wf ce =⇒ J desugar ce K = J desugar (compile ce) K

5. Integrate into compiler, discharge wf ce

Separation of concerns for modularity and ease-of-verification

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 15/29



Intermediate languages

ThunkLang
introduce pure thunks

• compile to
call-by-value

• remove harmful code
patterns

• optimisation around
thunks

EnvLang
introduce environments

• semantics uses
environments

• prove correctness of
reformulation

StateLang
introduce state

• CESK semantics

• compile IO
operations

• share thunk values
statefully

• optimise artefacts

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 16/29



Roadmap

Introduction

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness



Oracles vs. ITrees

Reconciling differing semantic styles

o1 o2 . . .∆(o1) ∆(o2)

linear oracles: semantics∆ e = tr

Vis o k
Vis o1 k1 . . .
Vis o2 k2 . . .

k(a1)

...
branching ITrees: J e K = Vis . . .

• Verified ITree semantics: J e K ∆⇝ tr ⇔ semantics∆ e = tr
• New compiler correctness: cakeml e = Some code . . .

code in memory of machine
J machine KM prunes J e K

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 17/29



End-to-end correctness

purecake str = Some ast

cakeml ast = Some code

code in memory of machine

exists ce such that

frontend str = Some (ce, )

J machine KM prunes J desugar ce Kpure

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 18/29



Roadmap

Introduction

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness



Realistic machine semantics for CakeML

CakeML Realistic machine
semantics

Unofficial L3
specification

Mmachine code
semantics in HOL4:

J progArm KM
q

prog
y

refines

extract

Official Arm
specification

Arm

extract

J progArm KArm

refines

refines

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 19/29



Roadmap

Introduction

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness



ISA specification languages

DSLs to specify the ISA abstraction
i.e. an envelope of permitted processor implementations

• Machine-readable: parsing, type-checking, simulation, modelling,
verification, . . .

• First order, imperative languages with common features:
• static typing + type inference
• strong bit vector support
• scattered functions

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 20/29



DSLs for Arm specifications

ASL
for Arm documentation

• originally Arm-internal
pseudocode

• source of (near-)truth

• official public releases

Sail
one size fits all

• developed in academia

• ASL front end, many
back ends

• well-exercised

L3
state of art for ITP

• developed in academia

• HOL4 and Isabelle/HOL
back ends

• designed for ITP +
well-exercised

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 21/29



Extracting an official specification to HOL4

ASL Sail Lem HOL4asl_to_sail sail -lem lem -hol

Result: Armv8.6 in HOL4

imperative declarations

become

monadic definitions
bitvector built-ins derived operations

primitive operations implemented operations
liquid dependent types simple polymorphic types

scattered functions monolithic definitions

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 22/29



Roadmap

Introduction

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness



Modifying the specification

Adapting to proofs of semantics preservation

Monad
avoid set-based non-determinism in

favour of Hilbert choice

modify hand-written libraries

Address translation
stub out as an identity, update physical

addresses (52-bit 7→ 64-bit)

rely on Sail

Trust???

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 23/29



Specification size

Character counts:

53 k 4,200 k
Armv8 in L3 Armv8 in ASL

70 k 12,200 k
Armv8 in HOL4 via L3 Armv8 in HOL4 via Sail

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 24/29



Specification complexity

Long extraction pathway produces non-idiomatic specification

ASL Sail Lem HOL4asl_to_sail sail -lem lem -hol

Difficult to inspect or interact with:

monadic bloat large monolithic definitions
non-idiomatic operations poor in-logic evaluation
lack of instruction AST translation artefacts

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 25/29



Taming the specification

Interactively abstract to theorem-prover-friendly L3

Per opcode, prove a simulation:

l3 l3 ′

asl asl ′

state rel

Run (Decode opcode)

state rel

ExecA64 opcode

with some fixed system register bits in asl, asl’

Once and for all proof, not tied to CakeML

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 26/29



Instructions verified

Instruction class Assembly shorthands

move wide operations movk, movn, movz
bit field moves bfm, sbfm, ubfm

logical operations∗† and[s], bic[s], eon, eor, orn, orr
addition/subtraction∗† add[s], sub[s]

addition/subtraction with carry adc[s], sbc[s]
division sdiv, udiv

multiply with addition/subtraction madd, msub
multiply high smulh, umulh

conditional compare∗ ccmn, ccmp
conditional select csel, csinc, csinv, csneg

branch immediate (call/jump) b, bl
conditional branches b.cond

branch register (jump) br
register extract extr

address calculation adr, adrp
byte/register loads/stores∗‡ ld[u]r, ld[u]r[s]b, st[u]r, st[u]rb

∗For immediate operands. †For shifted register operands.
‡Scaled 12-bit unsigned immediate offset and unscaled 9-bit signed immediate offset addressing modes.

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 27/29



Roadmap

Introduction

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness



Context: CakeML’s support for multiple targets

Design choices: target-agnostic and realistic

• LabLang/Asm: generic assembly-like intermediate language
• Target-agnostic semantics which models execution environment

• Instruction execution steps: next trgtn = trgtn+1
• Interference between successive instructions: ι1, ι2, . . .
• Projection π of processor state always preserved

i.e. trgt0
next−−→ trgt1

ι1−−−→ trgt ′
1 −→ . . . where π trgt ′

1 = π trgt1

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 28/29



Lifting to CakeML compiler correctness

Compiler correctness factored to a core proof obligation

asm1 asm2

trgt0 trgt1 trgt ′
1 · · · trgtn trgt ′

n

next asm instr

target state rel target state rel

next ι1 next next ιn

Proof strategy

• Replay existing proof for L3 specification
• Step through ASL states alongside by applying simulation result
• Carefully manage interference to preserve invariants

Viva voce — Hrutvik Kanabar — University of Kent — Wednesday 13th September 29/29



Roadmap

Introduction

A purely functional language
Source language
Compiler front end
Compiler back end
Connection with CakeML

A realistic machine semantics
Arm ISA specifications
Semantics preservation
Compiler correctness


	Introduction
	A purely functional language
	Source language
	Compiler front end
	Compiler back end
	Connection with CakeML

	A realistic machine semantics
	Arm ISA specifications
	Semantics preservation
	Compiler correctness


