
Verified efficient libraries for CakeML

HRUTVIK KANABAR∗, University of Kent, UK

The CakeML project has matured since 2012, and is now a practical language with an optimising, end-to-end
verified compiler. We turn our attention to performance and usability, aiming to enable useful applications
in CakeML which maintain the guarantees of the verified framework.

We are currently investigating a logical relation which will give CakeML a semantic type system, following
the approach of projects such as RustBelt. This has several applications, including improved performance in
imperative compiler benchmarks, and stronger reasoning about CakeML types.

We first apply the technique to a version of System F with CakeML-like semantics, augmented by existen-
tial, general isorecursive, sum, and product types. As in the rest of the CakeML project, our work is formalised
in HOL4.

Additional Key Words and Phrases: semantic types, logical relations, formal verification, HOL4

1 INTRODUCTION
CakeML is a formally-specified programming language, with a verified end-to-end correct optimis-
ing compiler. Using the interactive theorem-prover HOL4, the language semantics are specified in
the functional big-step style: as a clocked (or fuelled) recursive interpreter [15].

The compiler correctness theorems state that input is compiled to machine code with the same
semantics, provided this semantics does not get “stuck” – i.e. the input is safe. For user-written
code, this condition is enforced by invoking a sound and complete type inferencer, and appealing
to our type soundness theorem. However, syntactic type soundness is a whole-program property,
and so CakeML libraries must syntactically type-check to be usable in user code. This imposes
strong restrictions: for example, unchecked array accesses cannot syntactically be assigned a type
in a type-safe language, and so CakeML does not have efficient libraries operating on arrays. This
contributes to CakeML’s slow performance in imperative benchmarks [18].

We aim to provide a more general method to ensure safety in CakeML. This should be composi-
tional with little added effort from users, and should permit reasoning about almost any CakeML
expression (including those that do not syntactically type-check). We are pursuing a unary logical
relation to give a semantic type system for CakeML (§2), following the approach of projects such
as RustBelt [9, 10]. We have first applied the technique to a version of System F with existential,
general isorecursive, sum, and product types, as well as a CakeML-like semantics.We are exploring
some use cases (§3), which we plan to transfer into CakeML in future work.

2 A LOGICAL RELATION FOR SEMANTIC TYPING IN CAKEML
We define unary logical relations on System F values and expressions in the usual way [2], using
step-indexing to handle general isorecursive types. The relations are parametrised by a type, to
which they give a semantics: a value or expression is in the respective relation if it is safe to use
at the type for the number of computational steps given by the step-index.

We lift these relations to term variable contexts (Γ), to give a notion of semantic typing:

Γ; ρ ⊨ e : τ =⇒ e is safe to use as if it has type τ , in any environment
whose values are safe to use as if they have the types given by Γ. (1)

∗Supported by the UK Research Institute in Verified Trustworthy Software Systems (VeTSS).

Author’s address: Hrutvik Kanabar, hk324@kent.ac.uk, University of Kent, Canterbury, UK, CT2 7NZ.



2 Hrutvik Kanabar

Here, ρ is a semantic type variable context, a collection of relations which give semantics to the
free type variables in τ . The semantic typing judgement must reason about safety for any number
of computational steps, so its definition universally quantifies over the step-index.

This approach is both compositional and general enough to be appropriate for our initial motiva-
tion of efficient libraries (§3.1). It further enables applications in reasoning about data abstraction,
and verified compilation to CakeML (§3.2, §3.3).

3 APPLICATIONS
3.1 Verified efficient libraries
Efficient libraries often do not syntactically type-check, so languages provide “escape hatches”
to circumvent checks (e.g. OCaml has unsafe_get for non-bounds-checked array accesses, and
Obj.magic for unsafe casts; Rust has unsafe for freely aliasing pointers). However, users of such
libraries lose the ability to assure safety of their code by syntactically type-checking it – syntactic
type-soundness requires that every component of a program must type-check:

Γ ⊢ e : τ ∧
(∀ xi ∈ dom(Γ) . ∅ ⊢ ei : Γ(xi )

)
=⇒ ¬crash

(
e[ei/xi ]

)
Though type-checking is compositional, and can consider each component (e, ei ) of the whole
program (e[ei/xi ]) independently, safety (¬crash(·)) is only guaranteed if all checks succeed.

We observe that in CakeML all libraries are verified, so we only have to compose verified library
code with syntactically typeable (but perhaps unverified) user code safely. We take inspiration
from the RustBelt project – for each syntactic typing rule (Γ;∆ ⊢ e : τ for term context Γ and type
variable context∆) of our version of System F, we have proven a semantic equivalent (Γ; ρ ⊨ e : τ
for semantic type variable context ρ, as in Equation 1):

p1 · · · pn

Γ; dom(ρ) ⊢ e : τ
=⇒

t
p1 · · · pn

Γ; dom(ρ) ⊢ e : τ

|

where
t

p1 · · · pn

Γ; dom(ρ) ⊢ e : τ

|
def
=

Jp1K · · · JpnK
Γ; ρ ⊨ e : τ

This allows us to compose syntactic and semantic typing derivations, with a verification obligation
on the library writer only.

3.2 Reasoning about data abstraction
Likemany high-level languages, CakeMLusesmodules to provide data abstraction:module-writers
can restrict implementation exposure to ensure that internal invariants are maintained. Strong
type systems implicitly enforce this abstraction; however they do not provide appropriate formal
guarantees [7].

Semantic typing allows us to embed the invariants into the type variable environment of the
semantic typing judgement (Equation 1). To demonstrate this approach, we have encoded simple
modules in the existential type constructs of our version of System F. We can then verify that well-
typed uses of these modules must preserve their invariants. In future work, we plan to transfer this
to the CakeML module system by proving a general Reynolds-style abstraction theorem, taking
inspiration from Crary [7].

Candle: a HOL prover implemented in CakeML. We plan to apply this abstraction theorem to
Candle, a HOL theorem-prover implemented in CakeML [13]. Following the LCF-style of theorem-
provers, Candle implements a theorem datatype and primitive inference rules in a trusted module.
Exposure of the datatype is restricted so that only the trusted module can construct theorems; thus



Verified efficient libraries for CakeML 3

all theorems can only be constructed using the inference rules. To show that Candle produces only
valid theorems, we must prove that the abstraction is correctly enforced.

3.3 Verified compilation to CakeML
We believe that semantic typing will enable the use of code written directly in CakeML alongside
Coq-verified code which is then compiled to CakeML.

Verified extraction from Coq to CakeML could compose with the existing CakeML verified com-
piler, enabling an end-to-end verification toolchain for Coq programs with CakeML at its core.
However, the specification language of Coq is based on the Calculus of Inductive Constructions,
and has a more expressive type system (allowing for features such as dependent types) than that
of CakeML. Therefore, CakeML code compiled from Coq will not always syntactically type-check,
even though Coq’s type system assures safety of the source code. Semantic typing allows us to
reason about safety at the CakeML level, and so enable both composition with user code and in-
vocation of the CakeML compiler correctness theorem.

Currently, Coq provides unsafe extraction to OCaml, with the insertion of arbitrary casts in
generated code to pass the OCaml type-checker.

4 RELATEDWORK
The proof technique of (step-indexed) logical relations is well-studied [1, 2, 5, 16], especially when
applied to the problem of contextual equivalence [8, 17, 19]. It has also successfully been used in
various semantic type soundness proofs, particularly recently [9].

The RustBelt project gives a semantics to Rust types to show safety of expressions with respect
to the data-sharing disciplines of Rust [10]. The project (like much of the recent literature) uses
the general Iris framework for higher-order concurrent separation logics [11]. The Iris logic is
derived from a small set of primitives and is shallowly-embedded in Coq. This embedding gives
Iris much of its generality and extensibility, but relies on the dependently-typed meta-logic of Coq.
Therefore, it seems we cannot express the Iris logic in HOL. As a result, we are restricted to using
more primitive mathematical constructs, similar to the literature pre-Iris, and it is well-known that
this is intricate work. We could alternatively take inspiration from earlier versions of Iris, which
relied on a greater set of primitives and so were less general [12] – these could be expressible in
HOL, but further exploration is required.

To our knowledge, our semantic type system is novel in that it will be the first such system to
reason about a real-world, formally-specified language: though RustBelt has successfully found
bugs in Rust, it relies on a lambda calculus intended to model core Rust features, and no official
formal specification exists for the real-world language. Our system is also formalised outside of
Iris, and backed by a functional big-step semantics.

CertiCoq [3, 6] provides verified compilation of Coq to Clight, the front-end language of the
CompCert verified compiler [14]. The project plans to allow linking of CertiCoq-compiled code to
written Clight code, mirroring our goal in CakeML. It also intends to enable linking of the proof
theory of Coq and that of Clight; the latter is the Verified Software Toolchain (VST), a separation
logic for Clight [4]. The disparities between the program logics for the functional language of
Coq and the imperative Clight pose problems here, but this may not be the case with a verified
extraction to CakeML. This could allow for code to be partly verified in Coq and partly using
CakeML frameworks – further research is required to determine feasibility.



4 Hrutvik Kanabar

REFERENCES
[1] Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Proceedings of

the 15th European Conference on Programming Languages and Systems (ESOP’06), Peter Sestoft (Ed.). Springer, Berlin,
Heidelberg, Germany, 69–83. https://doi.org/10.1007/11693024_6

[2] Amal J. Ahmed. 2004. Semantics of Types for Mutable State. Ph.D. Dissertation. Princeton, NJ, USA. Advisor(s) Andrew
Appel.

[3] Abhishek Anand, Andrew W. Appel, Greg Morrisett, Zoe Paraskevopoulou, Randy Pollack, Olivier Savary Bélanger,
Matthieu Sozeau, and MatthewWeaver. 2016. CertiCoq : A verified compiler for Coq. In Proceedings of the 3rd Interna-
tional Workshop on Coq for Programming Languages (CoqPL’17), Sandrine Blazy and Emilio Jesús Gallego Arias (Eds.).
ACM, New York, NY, USA.

[4] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon Stewart, Sandrine Blazy,
and Xavier Leroy. 2014. Program Logics for Certified Compilers. Cambridge University Press, New York, NY, USA.

[5] AndrewW. Appel and David McAllester. 2001. An IndexedModel of Recursive Types for Foundational Proof-carrying
Code. ACM Trans. Program. Lang. Syst. 23, 5 (Sept. 2001), 657–683. https://doi.org/10.1145/504709.504712

[6] Oliver Savary Belang/’er. 2019. Verified Extraction for Coq. Ph.D. Dissertation. Princeton, NJ, USA. Advisor(s) Andrew
Appell. ftp://ftp.cs.princeton.edu/techreports/2019/011.pdf

[7] Karl Crary. 2017. Modules, Abstraction, and Parametric Polymorphism. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL’17). ACM, New York, NY, USA, 100–113. https://doi.org/
10.1145/3009837.3009892

[8] Derek Dreyer, Georg Neis, and Lars Birkedal. 2010. The Impact of Higher-order State and Control Effects on Local
Relational Reasoning. In Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming
(ICFP’10), Paul Hudak and Stephanie Weirich (Eds.). ACM, New York, NY, USA, 143–156. https://doi.org/10.1145/
1863543.1863566

[9] Derek Dreyer, Amin Timany, Robbert Krebbers, Lars Birkedal, and Ralf Jung. 2017. What type soundness theorem do
you really want to prove? (October 2017). Retrieved November 7, 2019 from https://blog.sigplan.org/2019/10/17/what-
type-soundness-theorem-do-you-really-want-to-prove/

[10] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: securing the foundations
of the rust programming language. Proceedings of the ACM on Programming Languages 2, POPL (2018), 66:1–66:34.
https://doi.org/10.1145/3158154

[11] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming
28 (2018), e20. https://doi.org/10.1017/S0956796818000151

[12] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.
Iris: Monoids and Invariants As an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’15). ACM, New York, NY, USA,
637–650. https://doi.org/10.1145/2676726.2676980

[13] Ramana Kumar, Rob Arthan, Magnus O.Myreen, and ScottOwens. 2014. HOLwith Definitions: Semantics, Soundness,
and a Verified Implementation. In Interactive Theorem Proving (ITP) (Lecture Notes in Computer Science), Gerwin Klein
and Ruben Gamboa (Eds.), Vol. 8558. Springer, 308–324. https://doi.org/10.1007/978-3-319-08970-6_20

[14] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and Christian Ferdinand. 2016.
CompCert: a formally verified optimizing compiler. In Proceedings of the 8th European Congress on Embedded Real
Time Software and Systems (ERTS’16), Kjeld Hjortnaes and Joseph Sifakis (Eds.).

[15] Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. 2016. Functional Big-step Semantics. In
Proceedings of the 25th European Symposium on Programming, ESOP 2016 (Lecture Notes in Computer Science), Peter
Thiemann (Ed.), Vol. 9632. Springer, New York, NY, USA, 589–615. https://doi.org/10.1007/978-3-662-49498-1_23

[16] Benjamin C. Pierce. 2004. Advanced Topics in Types and Programming Languages. TheMIT Press, Massachusetts, USA.
[17] Andrew Pitts and Ian Stark. 1993. Observable Properties of Higher Order Functions that Dynamically Create Local

Names, or: What’s new?. In Proceedings of the 18th International Symposium on Mathematical Foundations of Computer
Science (MFCS’93), A.M. Borzyszkowski and S. Sokolowski (Eds.). Springer, Berlin, Heidelberg, Germany, 122–141.

[18] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens, and Michael Norrish. 2019. The
verified CakeML compiler backend. Journal of Functional Programming 29 (2019), e2. https://doi.org/10.1017/
S0956796818000229

[19] Amin Timany. 2018. Contributions in Programming Languages Theory: Logical Relations and Type Theory. Ph.D. Dis-
sertation. Leuven, Belgium. Advisor(s) Bart Jacobs and Frank Piessens. https://lirias.kuleuven.be/1838165

https://doi.org/10.1007/11693024_6
https://doi.org/10.1145/504709.504712
ftp://ftp.cs.princeton.edu/techreports/2019/011.pdf
https://doi.org/10.1145/3009837.3009892
https://doi.org/10.1145/3009837.3009892
https://doi.org/10.1145/1863543.1863566
https://doi.org/10.1145/1863543.1863566
https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-do-you-really-want-to-prove/
https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-do-you-really-want-to-prove/
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/978-3-319-08970-6_20
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1017/S0956796818000229
https://lirias.kuleuven.be/1838165

	Abstract
	1 Introduction
	2 A logical relation for semantic typing in CakeML
	3 Applications
	3.1 Verified efficient libraries
	3.2 Reasoning about data abstraction
	3.3 Verified compilation to CakeML

	4 Related work
	References

