
Published at PLDI 2023

PureCake
A Verified Compiler for a Lazy Functional Language

Monday 19th June — PLDI 2023

Hrutvik Kanabar University of Kent

Samuel Vivien Chalmers University of Technology, École Normale Supérieure PSL
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Compiler guarantees
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Why verified compilation?

How do we know what our programs will do?

understand + trust compiler
source semantics to preserve it

We may trust GHC — but does its source semantics match our
understanding?

Verified compilation gives us a verified link between:

• formally-specified source semantics
• semantics-preserving compilation
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Our work

The PureCake project:

a HOL4-verified compiler for

a lazy, purely functional language which

is inspired by Haskell and

targets CakeML

CakeML = a verified implementation of a subset of ML [POPL14]
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Key contributions

Highlights

• sound equational reasoning
• parsing expression grammar (PEG) for Haskell-like syntax
• two-phase constraint-based type inference*
• demand analysis*
• optimisations for non-strict idioms
• monadic reflection* (monadic → imperative)
• CakeML as a back end for end-to-end verified compilation

*Not mechanically verified before
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This talk

High level, whistle-stop tour!

For more details:

• Read our paper: cakeml.org/pldi23-purecake.pdf
• Visit our GitHub: github.com/cakeml/pure
• Talk to us!

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 6

https://cakeml.org/pldi23-purecake.pdf
https://github.com/cakeml/pure


Roadmap

Introduction

Source language

Compiler front end

Compiler back end

Connection with CakeML



A realistic functional language

PureLang has standard functional idioms ...

fact :: Integer -> Integer -> Integer
fact a n =

if n < 2 then a
else fact (a * n) (n - 1)

map :: (a -> b) -> [a] -> [b]
map f l = case l of

[] -> []
h:t -> f h : map f t

factorials :: [Integer]
factorials = map (fact 1) (numbers 0)

general recursion

algebraic data types +
pattern-matching

higher-order functions

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 7



A realistic subset of Haskell

... and Haskell extras

numbers :: Integer -> [Integer]
numbers n = n : numbers (n + 1)

main :: IO ()
main = do

n <- readInt -- read from stdin
let facts = take n factorials
app (\i -> print $ toString i) facts

laziness → infinite data

pure by default, monads for:
• sequencing
• stateful computations
• I/O

Single IO monad for arrays, exceptions, and I/O (via FFI calls)

Also: indentation-sensitivity, do notation, mutual recursion, ...
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Formal syntax

A tale of two ASTs... separate implementation and verification

ce
compiler expressions

• higher-level
• used in implementation
• includes case

e
semantic expressions

• ground truth for semantics
• constructor operations:

test name/arity equality &
argument projection

desugar
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Semantics — ITrees

Need to model non-termination and I/O

HOL4-expressible coinductive interaction trees [Xia et. al., POPL20]:

itree E A R ::= Ret R termination
| Vis E (A → itree E A R) I/O via FFI channel
| Div silent divergence

vs.
No Tau nodes? Div!?

rely on non-constructivity of HOL4’s logic
strong bisimulation coincides with equality
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Semantics — definitions

Operational semantics in layers:

1. Weak-head evaluation: call-by-name, functional big-step

evalnwh e = wh

2. Lift to unclocked evaluation

evalwh e def=
{

wh for some n, evalnwh e = wh ̸= Timeout
Timeout for all n, evalnwh e = Timeout

3. Stateful interpretation of IO operations

L −, −, − M : wh → κ → σ → itree E A R

Finally, J e K def= L evalwh e, ε, ∅ M
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Mechanised equational reasoning

Mechanise untyped applicative bisimulation, ∼= [Abramsky, 1990]

Proved congruent via Howe’s method [Howe, 1996]

i.e. bisimilar sub-expressions =⇒ bisimilarity

Definitions:
• α-equivalence: e1 =α e2

def= perm vars e1 e2

• β-equivalence: (λx . e1) · e2 =β (freshene2 e1)[e2/x]
• A standard contextual equivalence: e1 ∼ e2

(equality under all closing contexts)

Derived results:
e1 ∼= e2 ⇐⇒ e1 ∼ e2

e1 =α e2

e1 ∼= e2

e1 =β e2

e1 ∼= e2
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Type system

Standard Hindley-Milner rules... with an unusual soundness proof

Problem:

non-strict semantics + exhaustive case splits mean that
“preservation” (subject reduction) does not hold

Solution:

• Define an alternative syntax for typing
• Prove subject reduction by construction
• Use equational theory to bridge the gap to original syntax
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Compiler structure

Concrete syntax

PureLang
ce from

pure call-by-name
(subst. semantics)

ThunkLang
pure call-by-value
(subst. semantics)

EnvLang
pure call-by-value
(env. semantics)

StateLang
impure call-by-value

(env. semantics)

CakeML source

lexing, parsing, desugaring
split letrecs; simplify
type inference
simplify
demand analysis
annotates with seqs
translate into call-by-value;
introduce delay/force;
avoid delay (force (var ))
lift λ-abstractions out
of lets/letrecs
simplify force expressions

reformulate to simplify
compilation to StateLang

compile delay/force and
IO monad to stateful ops
push · unit inwards
make every λ-abstraction
bind a variable
translate to CakeML;
attach helper functions

Upcoming slides examine the
compiler top to bottom

Frontend accepts PureLang

Three intermediate languages,
each with a specific focus

Targets CakeML
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Compiler structure

PureLang binding group
analysis

lexing,
parsing

type
inference

demand
analysis

front end

EnvLangThunkLang StateLang

back end
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Parsing

Indentation-sensitive parsing expression grammar (PEG):

PEG + [Adams POPL13]

N → XR1
1 XR2

2 . . . XRn
n

where R ∈ { =, >, ≥, U }

• Symbolic sets of possible indentations for each non-terminal
• Verified to terminate on all inputs
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Binding group analysis

Parsing

Analyse dependencies

Pseudo-topological sort

Transform code + tidy

z = 42
y = x + 1
x = w + y
w = 0
main

−→

let rec z = 42
y = x + 1
x = w + y
w = 0

in main

w
x

y
z

w x, y z

let w = 0 in
let rec x = w + y ; y = x + 1

in main

Verified entirely within equational theory
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Sound constraint-based type inference

Two-phases: generate all constraints −→ solve constraints

Subset of Helium’s Top framework [Heeren et. al., Haskell 2003]

• Open to high-quality error messages
• Path to various Haskell 98 features

Soundness theorem:

infer ce succeeds
=⇒ ce ⊢Top cs and cs solveable
=⇒ Γ ⊢ ce : τ
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Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n =
if ... then acc else fact (acc * n) (n - 1)

• e demands xn
def= e ∼= (x1 `seq` . . . xn `seq` e)

• Implement/verify* analysis: e demands (analyse e)
• Prefix code with seq, including in recursive functions

*Verify with an alternative equational theory, ≈ [Sergey et. al., 2014]:

stuck ≈ diverged ≈ ⊥ but well-typed =⇒ ≈, ∼= coincide
seq-prefixing preserves typing
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Compiler structure

PureLang binding group
analysis

lexing,
parsing

type
inference

demand
analysis

front end

EnvLangThunkLang StateLang

back end

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 20



Methodology — implementation vs. verification

Prior work: (such as CakeML)

• Define implementation function: transform : e → e
• Verify: wf e =⇒ J transform e K = J e K

This work:

e R e ′

syntactic relations

• for verification
• an implementation envelope

compile ce = ce ′

code transformation

• for implementation
• must fit in relation envelope
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Methodology — workflow

1. Define and verify R: e R e′ =⇒ J e K = J e′ K
Three simulation proofs: one per layer of the semantics

2. Define compile : ce → ce
3. Verify wf ce =⇒ (desugar ce) R

(
desugar (compile ce)

)
4. Compose theorems:

wf ce =⇒ J desugar ce K = J desugar (compile ce) K

5. Integrate into compiler, discharge wf ce

Separation of concerns for modularity and ease-of-verification
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ThunkLang

Call-by-value semantics

Syntax:

Semantics:

Optimisation:

Verification:

e ::= . . . | delay e | force e introduce thunks

eval (delay e) = thunk e

eval e = thunk e′

eval e′ = v
eval (force e) = v

NB thunks are pure, value-sharing comes later

reduce delay (force x); two forms of restricted CSE

seven syntactic relations in total
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EnvLang

Environment-based semantics + minor reformulations

Syntax:

Semantics:

Verification:

essentially unchanged

((((((substitutions environments

focuses on the change in semantic style
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StateLang

IO monad compiled to effectful primitives, thunks shared statefully

Syntax:

Semantics:

Compilation:

Optimisation:

e ::= . . . | malloc n e | . . . remove delay/force,
return/bind/...

stateful CESK machine

alloc n e 7−→ λ . malloc n e
force e 7−→ let x = e′ in

if x [0] then x [1]
else ... x [0] := true; x [1] := v ...

simplify λ . e and unit

[true, v ] or
[false, λ . . . .]
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Oracles vs. ITrees

Reconciling differing semantic styles

o1 o2 . . .∆(o1) ∆(o2)

linear oracles: semantics∆ e = tr

Vis o k
Vis o1 k1 . . .
Vis o2 k2 . . .

k(a1)

...
branching ITrees: J e K = Vis . . .

• Verified ITree semantics: J e K ∆⇝ tr ⇔ semantics∆ e = tr
• New compiler correctness: cakeml e = Some code

code in memory of machine
J machine KM prunes J e K
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Compiler correctness

purecake str = Some ast

exists ce such that

frontend str = Some (ce, )

ce is type safe

J desugar ce Kpure ≃ J ast K
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End-to-end correctness

purecake str = Some ast

cakeml ast = Some code

code in memory of machine

exists ce such that

frontend str = Some (ce, )

J machine KM prunes J desugar ce Kpure
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A verified binary

Verified bootstrapping using proof-producing synthesis [ICFP12]

HOL4 functions synthesise−−−−−−−→ AST + equivalence proof

The PureCake compiler is a HOL4 function...

purecake synthesise−−−−−−−→ purecake AST + equivalence proof

... and the CakeML compiler can be evaluated in-logic:

⊢ cakeml (purecake AST ) = 0xabc123...

Equivalence proofs transport verification to the binary
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Real-world usage of PureCake

Testing on the Cardano block chain platform by QuviQ

CEK machine MWE

0xabc123... 0x123abc...
QuickCheck
test cases

outputGHC outputpure

simplify

?

GHC PureCake

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 30



Summary

PureCake
cakeml.org/purecake

a verified compiler for a Haskell-like language
• sound equational reasoning
• Haskell-like syntax
• two-phase constraint-based sound type inference
• verified demand analysis
• optimisations to handle non-strict code realistically
• end-to-end guarantees by targeting CakeML
• feasible to use on real code

Questions?
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Future work

Only a first version! Many possible extensions, for example:

• Increasing source expressivity (e.g. for case)
• More Haskell 98 types, e.g. typeclasses
• More effective demand analysis
• Back end optimisations

A verified REPL for PureCake [Sewell et. al., PLDI23]
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Evaluation — setup

Measure execution time and memory allocations

• Turn off individual optimisations to highlight their effect
• pure: binding group analysis
• demands: demand analysis
• thunk: some force (delay e) reduction and CSE in ThunkLang
• state: λ . e/unit optimisations in StateLang

• Five benchmarks, each accepting integer n input
• primes: nth prime calculation
• collatz: longest Collatz sequence for a number less than n
• life: Conway’s Game of Life for n generations
• queens: solutions for the n-queens problem
• qsort: imperative quicksort for an array of length n
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Evaluation — results

Benchmark
primes collatz life queens qsort
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primes collatz life queens qsort
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1.5

2.0 log₂(allocation reduction)

Optimisations
±pure ±demands ±thunk ±state ±all

Results

• ThunkLang optimisations provide significant benefit
• StateLang optimisations improve monadic code particularly
• Binding group analysis negligible
• Regressions for demand analysis: seq-insertion is too eager!
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Alternative compiler correctness

frontend str = Some (ce, )

ce is type safe

exists ast such that

purecake str = Some ast

J desugar ce Kpure ≈ J ast K
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