
Published at PLDI 2023

PureCake
A Verified Compiler for a Lazy Functional Language

Monday 19th June — PLDI 2023

Hrutvik Kanabar University of Kent

Samuel Vivien Chalmers University of Technology, École Normale Supérieure PSL

Oskar Abrahamsson Chalmers University of Technology

Magnus O. Myreen Chalmers University of Technology

Michael Norrish Australian National University

Johannes Åman Pohjola University of New South Wales

Riccardo Zanetti Chalmers University of Technology

Language guarantees

Implementing MyCriticalSoftware

? type safety
memory safety

type safety
memory safety
purity vs. I/O

ref. transparency
laziness

free theorems
0xa1b2c3... 0xbcd456... 0xf9e8d7...

? ? ????

CompCert CakeML PureCake

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 1

Compiler guarantees

Compiling MyCriticalSoftware

? type safety
memory safety

type safety
memory safety
purity vs. I/O

ref. transparency
laziness

free theorems
0xa1b2c3... 0xbcd456... 0xf9e8d7...

? ? ????

CompCert CakeML PureCake

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 2

Why verified compilation?

How do we know what our programs will do?

understand + trust compiler
source semantics to preserve it

We may trust GHC — but does its source semantics match our
understanding?

Verified compilation gives us a verified link between:

• formally-specified source semantics
• semantics-preserving compilation

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 3

Our work

The PureCake project:

a HOL4-verified compiler for

a lazy, purely functional language which

is inspired by Haskell and

targets CakeML

CakeML = a verified implementation of a subset of ML [POPL14]

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 4

Key contributions

Highlights

• sound equational reasoning
• parsing expression grammar (PEG) for Haskell-like syntax
• two-phase constraint-based type inference*
• demand analysis*
• optimisations for non-strict idioms
• monadic reflection* (monadic → imperative)
• CakeML as a back end for end-to-end verified compilation

*Not mechanically verified before

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 5

This talk

High level, whistle-stop tour!

For more details:

• Read our paper: cakeml.org/pldi23-purecake.pdf
• Visit our GitHub: github.com/cakeml/pure
• Talk to us!

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 6

https://cakeml.org/pldi23-purecake.pdf
https://github.com/cakeml/pure

Roadmap

Introduction

Source language

Compiler front end

Compiler back end

Connection with CakeML

A realistic functional language

PureLang has standard functional idioms ...

fact :: Integer -> Integer -> Integer
fact a n =

if n < 2 then a
else fact (a * n) (n - 1)

map :: (a -> b) -> [a] -> [b]
map f l = case l of

[] -> []
h:t -> f h : map f t

factorials :: [Integer]
factorials = map (fact 1) (numbers 0)

general recursion

algebraic data types +
pattern-matching

higher-order functions

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 7

A realistic subset of Haskell

... and Haskell extras

numbers :: Integer -> [Integer]
numbers n = n : numbers (n + 1)

main :: IO ()
main = do

n <- readInt -- read from stdin
let facts = take n factorials
app (\i -> print $ toString i) facts

laziness → infinite data

pure by default, monads for:
• sequencing
• stateful computations
• I/O

Single IO monad for arrays, exceptions, and I/O (via FFI calls)

Also: indentation-sensitivity, do notation, mutual recursion, ...

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 8

Formal syntax

A tale of two ASTs... separate implementation and verification

ce
compiler expressions

• higher-level
• used in implementation
• includes case

e
semantic expressions

• ground truth for semantics
• constructor operations:

test name/arity equality &
argument projection

desugar

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 9

Semantics — ITrees

Need to model non-termination and I/O

HOL4-expressible coinductive interaction trees [Xia et. al., POPL20]:

itree E A R ::= Ret R termination
| Vis E (A → itree E A R) I/O via FFI channel
| Div silent divergence

vs.
No Tau nodes? Div!?

rely on non-constructivity of HOL4’s logic
strong bisimulation coincides with equality

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 10

Semantics — definitions

Operational semantics in layers:

1. Weak-head evaluation: call-by-name, functional big-step

evalnwh e = wh

2. Lift to unclocked evaluation

evalwh e def=
{

wh for some n, evalnwh e = wh ̸= Timeout
Timeout for all n, evalnwh e = Timeout

3. Stateful interpretation of IO operations

L −, −, − M : wh → κ → σ → itree E A R

Finally, J e K def= L evalwh e, ε, ∅ M

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 11

Mechanised equational reasoning

Mechanise untyped applicative bisimulation, ∼= [Abramsky, 1990]

Proved congruent via Howe’s method [Howe, 1996]

i.e. bisimilar sub-expressions =⇒ bisimilarity

Definitions:
• α-equivalence: e1 =α e2

def= perm vars e1 e2

• β-equivalence: (λx . e1) · e2 =β (freshene2 e1)[e2/x]
• A standard contextual equivalence: e1 ∼ e2

(equality under all closing contexts)

Derived results:
e1 ∼= e2 ⇐⇒ e1 ∼ e2

e1 =α e2

e1 ∼= e2

e1 =β e2

e1 ∼= e2

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 12

Type system

Standard Hindley-Milner rules... with an unusual soundness proof

Problem:

non-strict semantics + exhaustive case splits mean that
“preservation” (subject reduction) does not hold

Solution:

• Define an alternative syntax for typing
• Prove subject reduction by construction
• Use equational theory to bridge the gap to original syntax

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 13

Roadmap

Introduction

Source language

Compiler front end

Compiler back end

Connection with CakeML

Compiler structure

Concrete syntax

PureLang
ce from

pure call-by-name
(subst. semantics)

ThunkLang
pure call-by-value
(subst. semantics)

EnvLang
pure call-by-value
(env. semantics)

StateLang
impure call-by-value

(env. semantics)

CakeML source

lexing, parsing, desugaring
split letrecs; simplify
type inference
simplify
demand analysis
annotates with seqs
translate into call-by-value;
introduce delay/force;
avoid delay (force (var))
lift λ-abstractions out
of lets/letrecs
simplify force expressions

reformulate to simplify
compilation to StateLang

compile delay/force and
IO monad to stateful ops
push · unit inwards
make every λ-abstraction
bind a variable
translate to CakeML;
attach helper functions

Upcoming slides examine the
compiler top to bottom

Frontend accepts PureLang

Three intermediate languages,
each with a specific focus

Targets CakeML

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 14

Compiler structure

PureLang binding group
analysis

lexing,
parsing

type
inference

demand
analysis

front end

EnvLangThunkLang StateLang

back end

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 15

Parsing

Indentation-sensitive parsing expression grammar (PEG):

PEG + [Adams POPL13]

N → XR1
1 XR2

2 . . . XRn
n

where R ∈ { =, >, ≥, U }

• Symbolic sets of possible indentations for each non-terminal
• Verified to terminate on all inputs

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 16

Binding group analysis

Parsing

Analyse dependencies

Pseudo-topological sort

Transform code + tidy

z = 42
y = x + 1
x = w + y
w = 0
main

−→

let rec z = 42
y = x + 1
x = w + y
w = 0

in main

w
x

y
z

w x, y z

let w = 0 in
let rec x = w + y ; y = x + 1

in main

Verified entirely within equational theory
PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 17

Sound constraint-based type inference

Two-phases: generate all constraints −→ solve constraints

Subset of Helium’s Top framework [Heeren et. al., Haskell 2003]

• Open to high-quality error messages
• Path to various Haskell 98 features

Soundness theorem:

infer ce succeeds
=⇒ ce ⊢Top cs and cs solveable
=⇒ Γ ⊢ ce : τ

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 18

Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n =
if ... then acc else fact (acc * n) (n - 1)

• e demands xn
def= e ∼= (x1 `seq` . . . xn `seq` e)

• Implement/verify* analysis: e demands (analyse e)
• Prefix code with seq, including in recursive functions

*Verify with an alternative equational theory, ≈ [Sergey et. al., 2014]:

stuck ≈ diverged ≈ ⊥ but well-typed =⇒ ≈, ∼= coincide
seq-prefixing preserves typing

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 19

Roadmap

Introduction

Source language

Compiler front end

Compiler back end

Connection with CakeML

Compiler structure

PureLang binding group
analysis

lexing,
parsing

type
inference

demand
analysis

front end

EnvLangThunkLang StateLang

back end

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 20

Methodology — implementation vs. verification

Prior work: (such as CakeML)

• Define implementation function: transform : e → e
• Verify: wf e =⇒ J transform e K = J e K

This work:

e R e ′

syntactic relations

• for verification
• an implementation envelope

compile ce = ce ′

code transformation

• for implementation
• must fit in relation envelope

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 21

Methodology — workflow

1. Define and verify R: e R e′ =⇒ J e K = J e′ K
Three simulation proofs: one per layer of the semantics

2. Define compile : ce → ce
3. Verify wf ce =⇒ (desugar ce) R

(
desugar (compile ce)

)
4. Compose theorems:

wf ce =⇒ J desugar ce K = J desugar (compile ce) K

5. Integrate into compiler, discharge wf ce

Separation of concerns for modularity and ease-of-verification

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 22

ThunkLang

Call-by-value semantics

Syntax:

Semantics:

Optimisation:

Verification:

e ::= . . . | delay e | force e introduce thunks

eval (delay e) = thunk e

eval e = thunk e′

eval e′ = v
eval (force e) = v

NB thunks are pure, value-sharing comes later

reduce delay (force x); two forms of restricted CSE

seven syntactic relations in total

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 23

EnvLang

Environment-based semantics + minor reformulations

Syntax:

Semantics:

Verification:

essentially unchanged

((((((substitutions environments

focuses on the change in semantic style

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 24

StateLang

IO monad compiled to effectful primitives, thunks shared statefully

Syntax:

Semantics:

Compilation:

Optimisation:

e ::= . . . | malloc n e | . . . remove delay/force,
return/bind/...

stateful CESK machine

alloc n e 7−→ λ . malloc n e
force e 7−→ let x = e′ in

if x [0] then x [1]
else ... x [0] := true; x [1] := v ...

simplify λ . e and unit

[true, v] or
[false, λ]

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 25

Roadmap

Introduction

Source language

Compiler front end

Compiler back end

Connection with CakeML

Oracles vs. ITrees

Reconciling differing semantic styles

o1 o2 . . .∆(o1) ∆(o2)

linear oracles: semantics∆ e = tr

Vis o k
Vis o1 k1 . . .
Vis o2 k2 . . .

k(a1)

...
branching ITrees: J e K = Vis . . .

• Verified ITree semantics: J e K ∆⇝ tr ⇔ semantics∆ e = tr
• New compiler correctness: cakeml e = Some code

code in memory of machine
J machine KM prunes J e K

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 26

Compiler correctness

purecake str = Some ast

exists ce such that

frontend str = Some (ce,)

ce is type safe

J desugar ce Kpure ≃ J ast K

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 27

End-to-end correctness

purecake str = Some ast

cakeml ast = Some code

code in memory of machine

exists ce such that

frontend str = Some (ce,)

J machine KM prunes J desugar ce Kpure

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 28

A verified binary

Verified bootstrapping using proof-producing synthesis [ICFP12]

HOL4 functions synthesise−−−−−−−→ AST + equivalence proof

The PureCake compiler is a HOL4 function...

purecake synthesise−−−−−−−→ purecake AST + equivalence proof

... and the CakeML compiler can be evaluated in-logic:

⊢ cakeml (purecake AST) = 0xabc123...

Equivalence proofs transport verification to the binary

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 29

Real-world usage of PureCake

Testing on the Cardano block chain platform by QuviQ

CEK machine MWE

0xabc123... 0x123abc...
QuickCheck
test cases

outputGHC outputpure

simplify

?

GHC PureCake

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 30

Summary

PureCake
cakeml.org/purecake

a verified compiler for a Haskell-like language
• sound equational reasoning
• Haskell-like syntax
• two-phase constraint-based sound type inference
• verified demand analysis
• optimisations to handle non-strict code realistically
• end-to-end guarantees by targeting CakeML
• feasible to use on real code

Questions?

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023 31

https://cakeml.org/purecake

Backup slides

Future work

Only a first version! Many possible extensions, for example:

• Increasing source expressivity (e.g. for case)
• More Haskell 98 types, e.g. typeclasses
• More effective demand analysis
• Back end optimisations

A verified REPL for PureCake [Sewell et. al., PLDI23]

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023

Evaluation — setup

Measure execution time and memory allocations

• Turn off individual optimisations to highlight their effect
• pure: binding group analysis
• demands: demand analysis
• thunk: some force (delay e) reduction and CSE in ThunkLang
• state: λ . e/unit optimisations in StateLang

• Five benchmarks, each accepting integer n input
• primes: nth prime calculation
• collatz: longest Collatz sequence for a number less than n
• life: Conway’s Game of Life for n generations
• queens: solutions for the n-queens problem
• qsort: imperative quicksort for an array of length n

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023

Evaluation — results

Benchmark
primes collatz life queens qsort

0.0

0.5

1.0

1.5

2.0

lo
g₂

(s
pe

ed
up

)

primes collatz life queens qsort

0.0

0.5

1.0

1.5

2.0 log₂(allocation reduction)

Optimisations
±pure ±demands ±thunk ±state ±all

Results

• ThunkLang optimisations provide significant benefit
• StateLang optimisations improve monadic code particularly
• Binding group analysis negligible
• Regressions for demand analysis: seq-insertion is too eager!

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023

Alternative compiler correctness

frontend str = Some (ce,)

ce is type safe

exists ast such that

purecake str = Some ast

J desugar ce Kpure ≈ J ast K

PureCake: A Verified Compiler for a Lazy Functional Language — Kanabar et al. — PLDI 2023

	Introduction
	Source language
	Compiler front end
	Compiler back end
	Connection with CakeML
	Appendix
	Backup slides

