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Abstract

Formal verification of a compiler offers the ultimate understanding of the behaviour of
compiled code: a mathematical proof relates the semantics of each output program to that
of its corresponding input. Users can rely on the same formally-specified understanding
of source-level behaviour as the compiler, so any reasoning about source code applies
equally to the machine code which is actually executed. Critically, these guarantees
demand faith only in a minimal trusted computing base (TCB). To date, only two
general-purpose, end-to-end verified compilers exist: CompCert and CakeML, which
compile a C-like and an ML-like language respectively.

In this dissertation, I advance the state of the art in general-purpose, end-to-end
compiler verification in two ways. First, I present PureCake, the first such verified
compiler for a purely functional, Haskell-like language. Second, I derive the first
compiler correctness theorem backed by a realistic machine semantics, that is, an official
specification for the Armv8 instruction set architecture.

Both advancements build on CakeML. PureCake extends CakeML’s guarantees
outwards, using it as an unmodified building block to demonstrate that we can reuse
verified compilers as we do unverified ones. The key difference is that reuse of a verified
compiler must consider not only its external implementation interface, but also its proof
interface: its top-level theorems and TCB. Conversely, a realistic machine semantics for
Armv8 strengthens the root of CakeML’s trust, reducing its TCB. Now, both CakeML
and the hardware it targets share a common understanding of Armv8 behaviour which
is derived from the same official sources.

Composing these two advancements fulfils the title of this dissertation: PureCake has
an end-to-end correctness theorem which spans from a purely functional, Haskell-like
language to a realistic, official machine semantics.
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Chapter 1

Introduction

Why verify a compiler? Transforming human-readable source code to a machine-readable
binary is complex, and miscompilations can introduce unexpected behaviour—bugs. A
complete mathematical proof of compiler correctness guarantees that the behaviour of
source and binary are identical, so any bugs encountered when executing the binary
must also be found in the source. Such a proof is too costly for everyday software in
which source-level bugs may be common, making the rate of miscompilation negligible.
However, hard-won source-level assurances about safety-critical software must not be
thrown away by use of a buggy compiler. For high-assurance software, the cost is worth
it: all software compiled by a verified compiler benefits from its guarantees, and any
source-level software verification is transported down to the code executed by hardware.

But how do we trust a proof of compiler correctness? It is no less complex than the
compiler itself, so we distil it down to its trusted computing base (TCB): some parts of the
proof such that trust in those parts means we can trust the whole. Indeed, unverified
compilers are well-known to contain bugs throughout, but bugs discovered in verified
compilers have been confined to their TCBs [Yang et al. 2011]. The goal then, is to
minimise the TCB and so minimise the need for trust.

Unfortunately, realistic software is so complex that we cannot trust human-written
proofs about it. Instead, we can use a interactive theorem prover, a program which
aids human-directed reasoning by carefully checking proofs. If we trust the theorem
prover, we can trust the proofs it checks. So, our goal should be to verify as much as
possible within a trusted theorem prover. In other words, we should pursue end-to-end
verification: a single theorem which spans the entire software system and discharges
any assumptions on the interactions between its various components.

What is the right end-to-end result for a compiler? It must equate the behaviour
of input source code with that of an output binary. But the behaviour of a binary is
tied to the hardware on which it runs, and modern mainstream hardware is highly



1. introduction 2

complex. Verified compilers which target mainstream hardware must use simplified
specifications of unknown fidelity, sacrificing trust in their results. There are only two
such general-purpose, end-to-end verified compilers to date: CompCert and CakeML,
which accept a C-like and an ML-like language respectively.

1.1 Contributions

I present two advances in general-purpose, end-to-end compiler verification.

• The first general-purpose, end-to-end verified compiler for a purely functional, call-by-name
language. Known as PureCake, its input language is modelled on a subset of
Haskell, while its compilation targets CakeML to produce correct machine code
for several mainstream architectures. Composition with unmodified CakeML
considers only its externally-presented interfaces: its compiler correctness theorem
and TCB. PureCake therefore inherits this TCB at a fraction of the verification effort,
and demonstrates reusability of CakeML.

• The first formal connection between an authoritative mainstream instruction set specification
and a compiler correctness theorem. I use an official Armv8 instruction set specification
to maximise trust in the compilation of CakeML (and therefore PureCake) to Armv8
hardware, reducing its TCB by removing a prior unvalidated Armv8 specification.
To do so, I introduce a technique for taming industrial-strength instruction set
specifications for repeated use in verification: once and for all in-prover abstraction.

All proofs are machine-checked by the HOL4 interactive theorem prover.

1.1.1 Publications

All contributions have been published in peer-reviewed conferences: each of the two parts
of this dissertation corresponds to a paper. Both papers are the result of collaboration
with the listed authors, but this dissertation is my own work. Below, I will indicate
material based on work completed by my collaborators, but which I present here for
completeness. All work is open-source, and the links below provide a detailed commit
history of contributions.

Part I

H. Kanabar, S. Vivien, O. Abrahamsson, M. O. Myreen, M. Norrish, J. Åman
Pohjola, and R. Zanetti. PureCake: A verified compiler for a lazy functional
language. In Programming Language Design and Implementation (PLDI). ACM,
2023. DOI 10.1145/3591259

http://dx.doi.org/10.1145/3591259
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This part and its associated paper describe the PureCake1 project, an ongoing collab-
oration under the CakeML2 umbrella. I wrote most of the paper, and I have worked
on almost all parts of the project in some capacity. I am grateful to Magnus Myreen
for originating and overseeing the project. Material described in §§ 3.1 and 3.4 was
completed almost exclusively by others. My collaborators were responsible for most of
the material in §§ 4.2 and 4.3, notably excepting compilation of monadic operations; the
semantics and compilation relation of § 4.4 were initially my work but evolved over the
project. All of the material in §§ 2.1 to 2.4 was a collective effort between a subset of
authors, of which I was a primary contributor.

Open-source. The PureCake repository can be found at https://github.com/CakeML/
pure. Significant contributions to the HOL4 and CakeML repositories are listed below.

• Material in § 5.2, integrated into CakeML:
https://github.com/CakeML/cakeml/pull/834,
https://github.com/CakeML/cakeml/pull/866,
https://github.com/CakeML/cakeml/pull/870.

• Material in § 3.2, integrated into HOL4:
https://github.com/HOL-Theorem-Prover/HOL/pull/889.

Part II

H. Kanabar, A. C. J. Fox, and M. O. Myreen. Taming an authoritative
Armv8 ISA specification: L3 validation and CakeML compiler verification.
In Interactive Theorem Proving (ITP), volume 237 of LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. DOI 10.4230/LIPIcs.ITP.2022.20

I carried out almost all proofs, and wrote the entire paper. I am grateful to Anthony Fox
and Magnus Myreen for originating the project while I was an intern at Arm Limited,
and for advising me through its execution and write-up.

Open-source. All material described in this part has been integrated into the HOL4
and CakeML repositories. The majority of the contributions are listed below.

• Material in §§ 7.3 and 8.1:
https://github.com/HOL-Theorem-Prover/armv8.6-asl-snapshot.

• Material in § 8: https://github.com/HOL-Theorem-Prover/HOL/pull/981.

• Material in § 9: https://github.com/CakeML/cakeml/pull/858.
1https://cakeml.org/purecake
2https://cakeml.org

https://github.com/CakeML/pure
https://github.com/CakeML/pure
https://github.com/CakeML/cakeml/pull/834
https://github.com/CakeML/cakeml/pull/866
https://github.com/CakeML/cakeml/pull/870
https://github.com/HOL-Theorem-Prover/HOL/pull/889
http://dx.doi.org/10.4230/LIPIcs.ITP.2022.20
https://github.com/HOL-Theorem-Prover/armv8.6-asl-snapshot
https://github.com/HOL-Theorem-Prover/HOL/pull/981
https://github.com/CakeML/cakeml/pull/858
https://cakeml.org/purecake
https://cakeml.org
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1.2 Background

The contributions above build directly on the verified compiler CakeML, which relies on
the interactive theorem prover HOL4. Here, I describe some key parts of these projects
which are necessary to understand the remainder of this dissertation. Readers closely
familiar with HOL4 and CakeML can safely skip this section.

First, I describe HOL4 and its in-logic evaluation capabilities (§ 1.2.1), which we will
later rely on to handle complex industrial instruction set specifications in-prover (§ 8.4),
to bootstrap the CakeML compiler (§ 1.2.2), and to produce a verified PureCake bin-
ary (§ 5.3.1). Second, I showcase CakeML’s style of specifying language semantics, its
top-level compiler correctness theorem, and its bootstrapping to produce a verified
binary (§ 1.2.2). Naturally CakeML’s source semantics plays a part in its compiler
correctness theorem, which will be extended by PureCake (§ 5.3) and instantiated with
an official semantics for Armv8 (§ 9.2). However, this style is so convenient in interactive
proof that we will also use it for PureCake’s language semantics (§ 2.3). Finally, CakeML’s
verified bootstrapping provides a blueprint to verifiably compile PureCake (§ 5.3.1).

Aside from these descriptions, I defer discussion of CakeML’s architecture-specific
compiler correctness proofs to § 9.1, where it becomes most relevant.

1.2.1 HOL4

HOL43 is an interactive theorem prover: a program which helps a human to prove
theorems in some logic. Interactive theorem provers implement a logic (sometimes called
an object language) and expose a meta-language. The meta-language is effectively a user
interface to the logic: a way to programmatically construct and manipulate logical terms
and theorems. Critically, any useful theorem prover must permit construction only
of valid theorems. In other words, all proofs are systematically machine-checked by the
prover. Machine-checked proofs provide the only practical way to derive trustworthy
theorems about realistic, complex software.

HOL4’s logic is a “higher-order logic” (HOL), specifically Church’s simple theory
of types [Church 1940]. In what is known as the “LCF tradition/style”, HOL4 is
implemented using a strongly typed meta-language, in this case Standard ML.4 Its LCF-
style kernel then defines a data type of theorems alongside primitive inference rules which
can construct the theorem data type. Outside of the kernel, this data type is held abstract:
the meta-language’s strong typing therefore ensures theorems are constructed only by
the primitive inference rules. This minimises its TCB, and therefore the TCBs of any
HOL4-verified projects: all complicated proof rules and automation are implemented

3https://hol-theorem-prover.org/
4The ML language family derives from the meta-language of Edinburgh/LCF [Gordon et al. 1979].

https://hol-theorem-prover.org/
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outside of HOL4’s kernel, and require no additional trust in the validity of its theorems.
HOL4 can further generate artifacts which permit independent checking of its usage of
the primitive inference rules.

HOL4 is a mature prover, but this dissertation needs only basic features of its logic
and one feature implemented using its meta-language: in-logic evaluation, discussed
below. Unless otherwise stated, all formulae in this dissertation map fairly directly to
terms of HOL4’s logic. Logical operators are standard (¬, ∧, ∨,⇒, ⇐⇒ ); true/false
are denoted T/F. Binders (∀, ∃, 𝜆) extend as far to the right as possible. I distinguish
variables and constants by font; constants are fully-defined logical terms and variables
can be instantiated to any logical term. Rules consist of premises above a conclusion,
separated by a horizontal line; these may characterise an inductive relation or simplify
presentation of an implication depending on context. Every term has a type, which can
be denoted term : type. Type variables use Greek letters; HOL4 data types are presented
using standard Backus-Naur form (::=); polymorphic types are prefix except for function
types (i.e., 𝛼 list, 𝛽 option, 𝛾 → 𝛿). Theorems are denoted by a turnstile (⊢); any free
variables in a theorem can be considered universally quantified.

All theorems in this dissertation are proven using HOL4, and I will omit details of
most proofs unless I consider them to be of particular interest. Further information on
HOL4 can be found in prior work [Slind and Norrish 2008].

Non-constructivity

HOL4’s logic is classical: the law of excluded middle holds. For any proposition 𝑃,
either it or its negation must be true: ⊢ ∀𝑃. 𝑃 ∨ ¬𝑃. This permits non-constructive
proofs. Another source of non-constructivity is a version of Hilbert’s choice operator,
𝜀 : (𝛼 → bool) → 𝛼, which we will use in § 8.1. This is usually written as a binder,
i.e., 𝜀𝑥. 𝑃 𝑥 denotes 𝜀 (𝜆𝑥. 𝑃 𝑥). The term 𝜀(𝑥 : 𝛼). 𝑃 𝑥 is an element 𝑥 of the type 𝛼

satisfying 𝑃 𝑥 if one exists, and some arbitrary element of type 𝛼 otherwise. The latter is
possible because all HOL4 types are inhabited. In other words, the choice operator has
the following characterising theorem:

⊢ 𝑃 (𝜀𝑥. 𝑃 𝑥) ⇐⇒ ∃𝑥. 𝑃 𝑥

In-logic evaluation

The goal of in-logic evaluation is to “compute” terms in HOL4’s logic. That is, the
automated reduction of a term to a suitable normal form using a call-by-value evaluation
strategy. This reduction must be verified: it must produce a theorem equating the
original and reduced forms.
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HOL4 has no primitive notion of in-logic evaluation, unlike the type theories
implemented by theorem provers such as Coq, Agda, and Lean. Instead, in-logic
evaluation is provided by a meta-language tool which I will refer to as EVAL [Barras 2000].
Given a HOL4 term, it will attempt to reduce that term bottom-up using 𝛽-conversion
and characteristic equations of any constants. For example:

EVAL (length [1, 2, 3]) produces the theorem ⊢ length [1, 2, 3] = 3

That is, application of EVAL to a term which denotes the length of the list [1, 2, 3]
produces a theorem equating the term to 3 by using the following equations for length:

⊢ length [] = 0 ⊢ length (𝑥 :: 𝑥𝑠) = 1 + length 𝑥𝑠

EVAL can be seen as a highly automated and efficient form of rewriting. It is also
highly customisable, allowing users to: choose exactly which equations it uses; control
its strictness; and provide custom Standard ML functions to manipulate specified term
patterns. These custom functions are used to handle e.g. arithmetic division efficiently.

1.2.2 CakeML

CakeML5 is an end-to-end verified compiler which accepts a language resembling a
subset of Standard ML and targets several mainstream architectures [Fox et al. 2017;
Kumar et al. 2014]. In other words, its source language syntax, semantics, and compiler
algorithm are formally specified in the logic of HOL4. The compiler algorithm is verified
to preserve semantics: the behaviour of a compiled target program is the same as that of
the input source program.

This is a simplified picture of a significant, mature ecosystem [Myreen 2021b]. For
example: CakeML’s compiler back end is rich in optimisations and generates code which
performs comparably to code produced by industrial-strength compilers [Tan et al.
2019]; its source language permits reasoning based on separation logic [Guéneau et al.
2017]; and a verified read-evaluate-print loop (REPL) permits proof of soundness of an
implementation of HOL Light [Abrahamsson et al. 2022; Sewell et al. 2022]. However,
PureCake uses CakeML as a black box compiler, and our work on official instruction set
specifications only reduces CakeML’s TCB. So we need not concern ourselves with details
within the CakeML project: we can focus only on its externally-presented interfaces,
and trust that it optimises input code effectively. A verified compiler exposes two such
interfaces: its implementation entry points (how do we invoke the compiler?) and its
proof footprint (what does the compiler guarantee, what is its TCB?) In other words, we

5Note that “CakeML” can refer to one of three things depending on context: the overall project/ecosystem,
a source language, and the verified compiler for that language.
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need only consider: CakeML’s source language semantics; and its compiler correctness
results (both the general version discussed below and architecture-specific ones in § 9.1).
I will briefly describe these below, with the addition of verified bootstrapping: a process
by which we can obtain a binary which correctly implements a verified compiler.

Functional big-step semantics

CakeML specifies semantics for all of its languages (source, intermediate, and target)
in the functional big-step style [Owens et al. 2016]. That is, each language is equipped
with a recursive interpreter (evaluate) which is clocked (or fuelled) to ensure totality:
parametrised by a natural number which is decremented on recursive calls that do not
reduce the input expression size. When the clock runs out, evaluate times out.

A simple example below shows the action of evaluate𝜆, a functional big-step interpreter
for a toy untyped 𝜆-calculus, on function application (𝑒1 · 𝑒2). I show evaluate𝜆 rather than
the evaluate function for either CakeML’s or PureCake’s source language for simplicity.
Superscripts 𝑗, 𝑘, and 𝑙 − 1 denote the input clock parameter. Here, Haskell-like do-
notation embeds evaluate𝜆 within an exception monad which supports two kinds of
exception: Timeout to denote running out of fuel, and Error to denote a runtime type error
(when a program gets “stuck” or “goes wrong”, e.g., by attempting to evaluate 1 + true).

1 evaluate𝑗

𝜆 𝜂 (𝑒1 · 𝑒2)
def
= do

2 (𝑣, 𝑘) ← evaluate𝑗

𝜆 𝜂 𝑒2;
3 (closure𝜂′ 𝑥. 𝑒 , 𝑙) ← evaluate𝑘

𝜆 𝜂 𝑒1;
4 if 𝑙 = 0 then (Timeout, 𝑙) else evaluate𝑙−1

𝜆 𝜂′[𝑥 ↦→ 𝑣] 𝑒

The design choices here follow those made by CakeML: semantics is untyped (or extrinsic,
Curry-style); evaluation is call-by-value; environments 𝜂 provide values for free variables
(instead of substitutions); the clock 𝑗 is “threaded through” the semantics (i.e., evaluation
of 𝑒2 may consume some of clock 𝑗 to produce clock 𝑘 ≤ 𝑗, reducing the fuel available for
evaluation of 𝑒1). From here on, all semantics will be untyped, but in § 2.3 the functional
big-step style is also applied to a call-by-name, substitution-based semantics with a
different clock-passing strategy.

Overall, this example evaluates argument 𝑒2 to a value 𝑣 (line 2) and 𝑒1 to a function
value closure𝜂′ 𝑥. 𝑒 (line 3), before evaluating function body 𝑒 in an environment which
extends the closure environment 𝜂′ by binding parameter name 𝑥 to 𝑣 (line 4). Timeouts
and runtime type errors are propagated by standard monadic operations; failed pattern
matches (e.g., assignment to closure𝜂′ 𝑥. 𝑒 on line 3) produce Error. The final recursive call
decrements the clock to ensure totality (line 4), all other recursive calls are structurally
recursive. Running out of clock produces Timeout (line 4).
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To derive a top-level semantics, we classically quantify over evaluate𝜆’s clock:

semantics𝜆 𝑒
def
=


Terminate res ∃𝑗. evaluate𝑗

𝜆 ∅ 𝑒 = (res, _) ∧ res ≠ Timeout

Diverge ∀𝑗. evaluate𝑗

𝜆 ∅ 𝑒 = (Timeout, _)

Here, ∅ denotes the empty environment. An expression terminates if evaluate𝜆 produces
a value or runtime type error for some clock. Otherwise, all clocks result in Timeout,
so overall the expression diverges. This definition relies on monotonicity of evaluate𝜆: if
evaluate𝑗

𝜆 produces a value or runtime type error, then evaluate𝑗′

𝜆 must produce the same
result for all 𝑗′ > 𝑗.

The approach generalises straightforwardly to handle non-determinism: both
evaluate𝜆 and semantics𝜆 are parametrised by an oracle Δ which supplies outcomes for
non-deterministic choices. For example, for I/O the oracle models the surrounding
execution environment by supplying user/environment responses to any program
output. Consider a toy construct input, which prints a string (prompt) to ask for user input
and returns the user’s response (response).

evaluate𝑗

𝜆 Δ 𝜂 (input 𝑒) def
= do

(String prompt, 𝑘, Δ′, io) ← evaluate𝑗

𝜆 Δ 𝜂 𝑒;
let (Δ′′, response) = Δ′ (Input prompt);(
String response, 𝑘, Δ′′, io ++ [(Input prompt, response)]

)
The input expression 𝑒 must evaluate to the prompt string, and invoking the oracle Δ

on prompt gives the user response, which is then returned. There are some subtleties
hidden here. Oracles evolve through successive invocations so that future outcomes
may depend on previous ones; they are threaded through evaluate𝜆 alongside the clock.
To capture all observable program behaviour, evaluate𝜆 now maintains an I/O trace: a
growing log of the program’s interactions with the surrounding execution environment
(i.e., the oracle), where each interaction contains an observable program output paired
with the environment’s response (dictated by the oracle). The constructor Input belongs
to a sum type which has one constructor per type of non-determinism modelled by
the oracle. CakeML semantics considers only I/O, so we reuse the Input constructor in
the I/O trace. All CakeML I/O is via its foreign function interface (FFI), which I will
describe further in § 5.1; in summary, observable program outputs are FFI calls (function
name and argument), and environment responses are return values of FFI functions.
Note that oracles model the environment extensionally, saying nothing about what the
Input constructor actually means: it is simply recorded as an uninterpreted effect in the
I/O trace. Here we have assumed that the environment always responds successfully,
but CakeML’s I/O oracle also models two environment failure modes: when the foreign
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function encounters an error, or fails to respond at all (i.e., diverges).
Last, in CakeML the clock, oracle, I/O trace, and a mutable store are bundled into a

single record, but I have presented them separately here to remain explicit.
Top-level semantics must now consider both termination behaviour and I/O traces.

The I/O trace for a diverging program is the (potentially infinite) upper bound of all finite
I/O traces derivable using evaluate𝜆. To understand all possible program behaviours,
we must consider all possible oracles (i.e., all possible execution environments).

semantics𝜆 Δ 𝑒
def
=


Terminate res io

∃𝑗. evaluate𝑗

𝜆 Δ ∅ 𝑒 = (res, _, _, io) ∧
res ≠ Timeout

Diverge io

(
∀𝑗. evaluate𝑗

𝜆 Δ ∅ 𝑒 = (Timeout, . . .)
)
∧

io =
⊔

𝑗

{
io′

��� evaluate𝑗

𝜆 Δ ∅ 𝑒 = (. . . , io′)
}

Owens et al. [2016] describe the full advantages of the functional big-step style in
detail. In brief: it avoids duplication in semantics by specifying termination, errors, and
divergence all at once; it is straightforwardly total and deterministic (for a given oracle,
provided monotonicity holds); its functional nature simplifies proofs by rewriting; and it
produces highly readable semantics.

CakeML compiler correctness

I focus on CakeML’s back end compiler correctness theorem rather than its end-to-end
correctness theorem; it omits parsing and type inference, which are not relevant for
this dissertation. The back end theorem is phrased in terms of two functional big-step
specifications: CakeML source semantics (semantics ) and a generic machine semantics
(semanticsM) which can be instantiated to any one of the targets supported by CakeML.
For now, we will consider only the shape of this theorem, deferring a more in-depth
description to § 9.1.

Theorem 1.1. CakeML compiler correctness.

⊢ target_configs_ok config machine ∧ semantics Δ prog ≠ Terminate Error _ ∧
compile config prog = Some code ∧ code_in_memory config code machine
⇒ semanticsM Δ machine ∈ extend_with_oom (semantics Δ prog)

Given some well-formed configurations (target_configs_ok) and a program (prog)
whose source semantics produces no runtime type errors, the compiled code can be
installed in the memory (code_in_memory) of a machine with a semantics which is either
identical to that of the source, or runs out of memory. I will define target_configs_ok and
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its input configurations in § 9.1. The “lack of runtime type error” assumption is common
for optimising compilers: ill-formed programs can be optimised arbitrarily.

Below, extend_with_oom specifies permitted out-of-memory errors, which can be
produced by machine semantics (which has finite memory) but not by CakeML’s source
semantics. In particular, extend_with_oom requires machines which run out of memory
to produce a prefix (≼) of the observable I/O trace of the source.

extend_with_oom (Terminate 𝑟 io) def
= {Terminate 𝑟 io} ∪ {OOM io′ | io′ ≼ io}

extend_with_oom (Diverge io) def
= {Diverge io} ∪ {OOM io′ | io′ ≼ io}

Verified bootstrapping

CakeML uses verified bootstrapping (or proof-grounded bootstrapping) to produce
a binary which is proven to implement its compiler faithfully [Myreen 2021a]. The
technique relies on both proof-producing synthesis of CakeML AST and HOL4’s in-logic
evaluation (§ 1.2.1).

Proof-producing synthesis is a proof automation tool written in Standard ML, i.e.,
living in HOL4’s meta-language rather than its logic. Given computable HOL4 functions,
it synthesises CakeML code alongside a HOL4 proof that the code implements the
input HOL4 faithfully [Myreen and Owens 2014]. Overall, this transports verification
of functions in HOL4’s logic to verified code. Here, “computable” functions are those
written in the subset of HOL4 which corresponds to an ML-like programming language.
The notion of “faithful implementation” is expressed using refinement invariants: relations
that equate the behaviour of CakeML AST (according to the CakeML semantics) with
HOL4 terms. Precise details of the synthesis are not necessary for this dissertation, but
Myreen and Owens [2014] explain the process in full. In brief, synthesis traverses the
input HOL4 term syntax bottom-up, generating CakeML AST and associated refinement
invariant proofs per subexpression. Refinement combinators combine refinement invariants
to compose per-subexpression proofs. Recursive functions require some care, as their
proofs must be inductive. Synthesis can also generate imperative and exception-
handling CakeML code from HOL4 functions which are written in a state/exception
monad [Abrahamsson et al. 2020]. Note that as a tool external to HOL4’s logic, synthesis
can fail to produce any CakeML AST—however, it cannot produce invalid theorems, and
so cannot produce an invalid AST.

The CakeML compiler is such a computable function (compile ). Therefore, proof-
producing synthesis can generate corresponding CakeML AST (ast ) which faithfully
implements the compiler. Next, we can use in-logic evaluation to compile the compiler
(i.e., bootstrap it): we apply the HOL4-specified compiler to the synthesised AST and
evaluate it to produce binary code (code). We can express this workflow informally:
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1. Write and verify the CakeML compiler in HOL4:
compile + theorem 1.1

2. Synthesise CakeML AST from the compiler:

compile
synthesise
−−−−−−−→ ast +

(
⊢ ast implements compile

)
3. Evaluate compilation of the CakeML AST in-logic:
EVAL (compile ast ) produces the theorem ⊢ compile ast = Some code

Critically, each stage produces a theorem within HOL4. Composing all theorems
in-prover produces a top-level theorem which asserts correctness of the binary code.

1.3 Related work: verified compilation

In this section, I review prior work in verified compilation. The work I describe here
is quite general; I will discuss work more specific to PureCake and realistic machine
semantics in later sections (§§ 6.2 and 10.2).

1.3.1 CompCert

CompCert [Leroy 2009] first showed that end-to-end verification was feasible for general-
purpose optimising compilers. It correctly compiles a subset of C99 (known as CompCert
C) to Arm, RISC-V, x86, and PowerPC machine code. Other than CakeML, it remains
the only general-purpose, end-to-end verified compiler, and is verified using the Coq
interactive theorem prover. Performance of CompCert-generated code is comparable to
that of the GNU Compiler Collection using moderate optimisation settings (-O1).

Like CakeML’s observable behaviour (§ 1.2.2), CompCert C’s observable behaviour
encapsulates both termination behaviour and an I/O trace, which consists of calls to C
standard library functions (akin to CakeML’s FFI) and reads/writes to global volatiles,
which can model memory-mapped I/O in C. However, CompCert must account for C-like
non-determinism (e.g., due to evaluation order) and undefined behaviour. Its correctness
theorem therefore asserts that generated machine code implements an improvement of
one of the source code behaviours: the compiler can choose between non-deterministic
behaviours and optimise expressions with undefined behaviour arbitrarily, even turning
them into well-defined expressions. CakeML compiles a deterministic, total (i.e., no
undefined behaviour) source language and does not consider ill-defined expressions.
CompCert also formalises a C-like memory model at a suitable level of abstraction to
permit fine-grained reasoning and permit reuse between its various languages [Besson
et al. 2015; Leroy and Blazy 2008].
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CompCert’s compiler uses several intermediate languages and passes. Splitting
up compilation simplifies verification, and CakeML mimics this design choice: each
intermediate language is tailored to its optimisations, and tractable per-pass proofs are
composed to produce the overall correctness result. In CompCert, this result spans from
CompCert C AST to assembly AST and further includes parsing [Jourdan et al. 2012].
However, the conversion from C concrete syntax to CompCert C AST aside from parsing
(i.e., preprocessing, type-checking, elaboration) and the generation of binary code from
assembly AST are unverified. CakeML requires no preprocessing and its type-checking
and assembling are verified, so its results span from concrete syntax to binary code.
CompCert does provide the Valex tool, which can post-hoc check linked binaries against
the assembly AST produced by the compiler. PureCake’s guarantees resemble those of
CompCert in that they begin at a source AST not concrete syntax; however, like those of
CakeML they bottom out in binary code (§ 5.3).

Extensions of CompCert. A significant ecosystem of work builds on CompCert; I
briefly describe some of it.

The Verified Software Toolchain (VST, Appel [2011]) formalises a program logic (a
concurrent separation logic) known as Verifiable C over Clight, the first intermediate
language of CompCert. Clight is a slightly simplified CompCert C (e.g., it forbids side-
effects within expressions) and so is often used when extending CompCert. Verifiable C
is proved sound with respect to Clight semantics, so CompCert compilation transports
source-level VST verification to assembly AST. Compatibility with VST necessitates a
small-step semantics for CompCert, which previously used a big-step semantics for ease
of compiler verification.

CertiCoq [Anand et al. 2017] and Œuf [Mullen et al. 2018] are verified compilers
from the logic of Coq, Gallina, to intermediate languages in CompCert: Clight and
Cminor respectively. Their motivation mirrors that of CakeML’s proof-producing
synthesis (§ 1.2.2), but the translations span a larger gap (Gallina to C-like language vs.
HOL4 to ML-like language). They could enable verified bootstrapping of CompCert,
removing its current reliance on unverified extraction of Coq to OCaml followed by
unverified compilation of the resulting OCaml.

CompCert has further been extended with correct compilation of concurrent be-
haviours [Jiang et al. 2019; Sevcík et al. 2013]. Below, I also refer to work on separate
compilation in the context of CompCert (§ 1.3.2).

1.3.2 Compositional compiler correctness

CakeML is a whole-program compiler: it accepts only entire programs, rather than
individual modules which can be compiled and later linked. CompCert too began as a
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whole-program compiler, but several extensions offer varying degrees of compositional
compilation [Gu et al. 2015; Kang et al. 2016; Koenig and Shao 2021; Song et al. 2020;
Stewart et al. 2015; Wang et al. 2019]. That is, correctness relates the behaviour of
compiled-then-linked modules to the behaviour of their linked sources. Note that the
notion of linking used in correctness statements may not correspond to any linker used
in practice: a verified linker is required to avoid increasing the TCB. These extensions
vary significantly in their flexibility: some can only link modules which are all compiled
by CompCert, others permit interoperation with hand-written target code or even any
code in a language satisfying CompCert’s memory model. One extension even supports
verified assembling for x86 to the standard ELF binary format [Wang et al. 2020].

Indeed, compositional compiler correctness is an imprecise term, and it is not clear
that there exists a “best” version of it. Patterson and Ahmed [2019] provide a thorough
overview (including the extensions to CompCert above) and propose a framework for
categorising and understanding variations; I defer a full discussion to their work but
briefly outline some key points.

A recurring theme is the use of cross-language relations to prove correctness, often
step-indexed, Kripke logical relations [Ahmed 2004; Ahmed et al. 2009], in contrast to the
lightweight simulations often used by whole-program compilers. These cross-language
relations pair source expressions with their correctly compiled target expressions and are
compositional by construction. For example, Hur and Dreyer [2011] establish a relation
between an ML-like language and idealised assembly, permitting correct single-pass
compilation which can link with hand-written assembly. Transitivity of these relations
is necessary to compose verification of successive passes and generalise to multi-pass
compilers, but it is non-trivial in the presence of stateful features. Neis et al. [2015] define
transitive-by-construction parametric inter-language simulations (known as PILS) to
verify the multi-pass Pilsner compiler.

A key limitation of the cross-language relations approach is that it permits linking
only with target code that has behaviour equivalent to some source code. Multi-language
approaches offer a solution [Perconti and Ahmed 2014]: instead of a single relation which
spans source and target, these use a single multi-language which embeds both languages
with suitable mediating interfaces, expressing interoperation “for free”. The statement of
compiler correctness then becomes a contextual equivalence within the multi-language
which equates source and compiled target expressions. The approach of Compositional
CompCert [Stewart et al. 2015] is related: it permits linking between any languages
satisfying CompCert’s memory model (such as CompCert’s source, intermediate, and
target languages) by using the memory model to derive an “interaction semantics” for
each language. Each interaction semantics inhabits the same semantic domain, allowing
a common notion of contextual equivalence across all languages: where multi-languages
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syntactically embed all linkable languages, interaction semantics consolidates all of
their semantics instead. Other than Compositional CompCert, compositional compiler
correctness is currently a theoretical exploration.

1.3.3 Alternatives to ahead-of-time compilation

CompCert and CakeML are ahead-of-time compilers: source programs are converted
into target programs before execution. Just-in-time (JIT) compilers offer an alternative
which compiles to target code on-the-fly. Verifying JIT compilation requires reconciling
execution of static and dynamically generated code which can also modify itself (e.g., to
update code pointers to generated code on-the-fly).

Myreen and Davis [2011] build a verified runtime environment for the Milawa
theorem prover, relying on JIT compilation of stack-based bytecode to x86 [Myreen 2010].
Both runtime and JIT rely on a precursor of CakeML’s proof-producing synthesis to
produce verified x86 machine code [Myreen et al. 2009]. This first generates unverified
x86 code, which is then proved correct after decompilation to sound Hoare triple
specifications [Myreen and Gordon 2007; Myreen et al. 2008], a form of machine code
verification.

In the CompCert ecosystem, JitK [Wang et al. 2014] verifiably implements two
interpreters from the Linux kernel by compilation via Cminor. These interpreters
permit integration of userspace policies written in their respective languages, BPF and
INET.DIAG, into trusted kernel code for monitoring and network filtering. JitK further
implements a high-level policy language which it correctly compiles to BPF. CoreJIT [Bar-
rière et al. 2021] reuses various CompCert back end components to verify a JIT compiler
which speculatively optimises code and can dynamically roll back these optimisations if
its assumptions fail to hold. FM-JIT [Barrière et al. 2023] uses the CompCert back end
to generate native code for a modern JIT architecture which interleaves execution of
an interpreter and dynamically compiled native code. However, certain JIT operations
(e.g., installing bytes in memory, calling native functions, and replacing stack frames
during handoffs between interpretation and native code execution) are not expressible as
shallow embeddings in Coq’s pure and terminating logic. Instead, they are considered
unimplemented primitives and assumed to adhere to their specifications, permitting
verification with respect to an abstract memory model. Code extraction to OCaml realises
the primitives; if the extracted implementations adhere to the assumed specifications
then the JIT performs correctly.
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1.3.4 Non-functional verification

CakeML and CompCert guarantee functional correctness: the observable input-output
behaviour of source code is preserved by compilation, so functional software verification
applies to target code too. Non-functional verification considers other observable
behaviour, such as execution time, memory usage, confidentiality, and so on.

Verification of secure applications must consider interoperation with untrusted
components, reasoning about e.g., confidentiality of private data or lack of information
leaks via timing side-channels. Secure compilation must guarantee more than functional
correctness then; Patrignani et al. [2019] provide a detailed overview. For confidentiality,
full abstraction is a common criterion: contextual equivalence is preserved during
compilation, so programs which are indistinguishable by any source context remain
indistinguishable under any target context, despite the greater distinguishing power of
low-level target contexts. In other words, no target-level vulnerabilities are introduced by
compilation. As alluded to in § 1.3.2, contextual equivalence is integral in compositional
compilation too, as compilation of individual components must be correct regardless of
the contexts in which they are eventually used. In the context of CompCert, Barthe et al.
[2020] show that source programs which execute in constant time (and therefore do not
leak information via timing side-channels) produce constant-time target code too.

Verifying the time and space usage of programs written in high-level languages
is non-trivial: the actual costs only become apparent once programs are compiled to
lower-level languages. Several projects find ways to express these low-level costs in
higher-level languages, so that high-level verification can reason about the resource
consumption of compiled code. The CerCo project [Amadio et al. 2013] has a compiler
which annotates source programs with the final time and space costs of the compiled
code. Quantitative CompCert [Carbonneaux et al. 2014] augments the I/O trace of
CompCert semantics with function call and return events; each trace therefore encodes a
symbolic representation of stack usage, which is preserved or reduced by compilation.
The compiler then calculates the actual stack frame size of each function which is used
in the symbolic representation. CompCertS [Besson et al. 2017] build on a version
of CompCert C with finite memory to estimate memory usage directly at the source,
verifying that compilation must preserve or reduce the inferred upper bounds. Stack-
Aware CompCert [Wang et al. 2019] considers a bounded stack, and verifies preservation
of stack usage through compilation. Gómez-Londoño et al. [2020] instrument the
semantics of a heapless intermediate language of the CakeML compiler to reason about
upper bounds on stack and live heap usage in the presence of garbage collection.

In § 6.2.1, I will discuss prior work on verifying that optimisations for Haskell-like
languages do not worsen complexity, and so do not compromise lazy evaluation.
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Outlook

High-level languages often claim to provide strong guarantees for the programmer. For
example: memory managed languages ensure memory safety; Haskell’s strong typing
demarcates stateful and pure computations, and its lazy evaluation reduces unnecessary
computation; Rust’s borrow checker prevents use-after-free bugs and thread-unsafe
behaviour. Compilers for high-level languages may use static checks to reject programs
which are semantically ill-defined, removing the burden of safety from the programmer.
By contrast, it is non-trivial to avoid undefined behaviour in more low-level languages
such as C++. However, high-level languages require longer compilation paths to generate
efficient code, providing greater scope for miscompilations which could compromise
intended guarantees.

Compilation of Haskell-like languages in particular presents unique challenges. These
languages implement lazy or call-by-need evaluation: expressions are computed only when
needed, and never recomputed on reuse. This necessitates purity: computations are free
of side-effects (stateful operations and I/O) by default, leading to referential transparency.
That is, equal expressions give rise to equal values in all contexts, corresponding to
the programmer model of equational reasoning. However, programmers can still access
stateful features and interact with the surrounding execution environment using monads.
Compiling these languages with some semblance of realism requires efficient lazy
evaluation which does not compromise equational reasoning, as well as optimisations
which reduce unnecessary laziness and generate idiomatic imperative code.

In this part, I describe PureCake, the most realistic certified compiler for a Haskell-
like language to date. PureCake correctly compiles its source language, PureLang, to
CakeML’s source language, leveraging CakeML’s mature verified compiler. First, I define
PureLang and derive its metatheory (§ 2), before describing the front and back ends of the
PureCake compiler (§§ 3 and 4). Next, I show how PureCake composes with CakeML to
produce its end-to-end guarantees (§ 5). Finally, I discuss PureCake’s contributions and
real-world usability, including its performance in comparison to the Glasgow Haskell
Compiler (§ 6).
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Chapter 2

PureLang and its metatheory

In this chapter, I describe PureCake’s source language, PureLang, and its associated
metatheory. PureLang’s features encompass both standard functional constructs and
those typically associated with Haskell (§ 2.1). Its formal syntax is specified in HOL4
using two ASTs (§ 2.2), and its untyped operational semantics defined in stages (§ 2.3)
using a variant of interaction trees [Xia et al. 2020]. We have mechanised an equational
theory over this semantics, proved congruent via Howe’s method (Howe [1996]), and
comparing favourably with 𝛼-, 𝛽-, and contextual equivalences (§ 2.4). PureLang’s typing
rules are standard Hindley-Milner, but require an unusual proof of type soundness (§ 2.5).

2.1 Features

The features of PureLang are carefully chosen to imitate a subset of Haskell faithfully
while permitting tractable verification. They are most clearly showcased by example:
figure 2.1 shows a short PureLang program which accepts integer 𝑛 on the command line
and prints the first 𝑛 numbers of the factorial sequence. PureLang syntax is indentation-
sensitive (§ 3.1) and inspired by Haskell; GHC accepts this program with minimal tweaks.
Features common to functional languages are supported: first-class functions (map on
line 12), general recursion (fact on lines 6-9), algebraic data types and pattern matching
([]/h:t on lines 16-17).

Other than its syntax, PureLang borrows several other features from Haskell. Top-level
definitions are mutually recursive and can be reordered freely. Evaluation is call-by-need:
expressions are computed only as deeply as they are inspected and never recomputed,
so infinite data structures can be constructed (e.g., numbers on lines 1-4). Eager evaluation
can be forced using Haskell’s seq operator. The built-in IO monad permits effectful
computation (main on lines 19-25), inspired by its namesake. As in this short example, a
complete PureLang program contains a definition of main :: IO ().
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1 numbers :: [Integer]
2 numbers =
3 let num n = n : num (n + 1)
4 in num 0
5

6 fact :: Integer -> Integer -> Integer
7 fact acc x =
8 if x < 2 then acc
9 else fact (acc * x) (x - 1)

10

11 factorials :: [Integer]
12 factorials = map (fact 1) numbers

14 app :: (a -> IO b) -> [a] -> IO ()
15 app f l = case l of
16 [] -> return ()
17 h:t -> do f h ; app f t
18

19 main :: IO ()
20 main = do
21 arg1 <- read_arg1
22 -- fromString == 0 on malformed input
23 let i = fromString arg1
24 facts = take i factorials
25 app (\i -> print $ toString i) facts

Figure 2.1. A small PureLang program printing a user-specified prefix of the factorial
sequence. Boilerplate definitions are omitted.

Aside from the standard return/bind (which are masked by do-notation), the IOmonad
provides the ability to create/update/query mutable arrays, raise/handle exceptions,
and perform I/O using a foreign function interface (FFI). Valid exceptions are defined as
a single, extensible sum type in an ML-like style. Users invoke FFI functions by applying
Action to a predefined FFI channel and string input; a string is returned. For example,
read_arg1 and print are defined as follows:

read_arg1 :: IO String

read_arg1 = Action (#(cline_arg) " ")

print :: String -> IO ()

print s = do

Action (#(stdout) (s ++ "\n "))

return ()

PureLang is inspired only by a subset of Haskell. Two notably missing features are
type classes and partiality (e.g., non-exhaustive pattern matches, Haskell’s undefined). I
discuss expressivity of PureLang further in § 6.1.1.

2.2 Formal syntax

Formally, we specify PureLang syntax in HOL4 using two AST data types: high-level
compiler expressions are used in implementation, and are considered syntactic sugar
for simpler semantic expressions, which provide ground truth for semantics. This
separates concerns: compilation is conveniently expressed over high-level expressions,
but semantics is straightforwardly specified using simpler primitives. For example:
semantic expressions use a minimal set of variable-binding forms to simplify spe-
cification of and reasoning about semantics (e.g., compiler expressions include case-
statements but semantic expressions omit them); compiler expressions use variadic
𝜆-abstractions/-applications to simplify the implementations of future optimisations
which must be arity-aware (e.g., arity analysis, inlining). Each intermediate language in
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primop ::= Primitive operations
| message ch message construction
| add integer addition
| . . . etc.

op ::= Operations
| cons cname data constructors/tuples
| prim primop primitive operations
| monadic mop monadic operations

lit ::= Literals
| int z integer
| str s string
| msg ch s message
| loc l location

ce ::= Compiler expressions
| var x variable
| lit literal
| op[ cen ] operator application
| 𝜆 xn . ce variadic 𝜆-abstraction
| ce · cen variadic 𝜆-application
| let x = ce1 in ce2 let-binding
| letrec xn = cen in ce recursive let-bindings
| seq ce1 ce2 sequencing
| case x = ce of cnamen[ xn m ] → cen pattern match

e ::= Semantic expressions
| var x variable
| lit literal
| op[ en ] operator application
| 𝜆x. e 𝜆-abstraction
| e1 · e2 𝜆-application
| letrec xn = en in e recursive let-bindings
| seq e1 e2 sequencing
| if e then e1 else e2 if-statement
| eq? cname arity e constructor name/arity test
| projn cname e constructor argument projection

Figure 2.2. PureLang operations op, literals lit, compiler expressions ce, and semantic
expressions e.
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PureCake’s compiler back end makes the same design choice, further enabling a modular
strategy for verification of compiler optimisations (§ 4.1).

Figure 2.2 defines data types for PureLang operations op, literals lit, compiler expres-
sions ce, and semantic expressions e. Operations and literals are shared by both compiler
and semantic expressions. Primitive operations include integer/string operations, and
creation of a message with input 𝑠 for FFI channel 𝑐ℎ: prim (message ch) [str s]. The
monadic operations encompass: return, bind; exception-handling (raise, handle); mut-
able array operations (alloc, len, deref, update); and FFI interaction (action). Literals
include integers, strings, messages, and locations. Users cannot directly write the last
two, but they will be used to specify PureLang semantics (§ 2.3).

PureLang’s compiler expressions are inspired by Core in the Glasgow Haskell
Compiler (GHC) [Peyton Jones and Launchbury 1991]. Note that tuples are formalised
using as cons cname with an empty cname. For simplicity, monadic mop are also formalised
as cons cname using reserved cnames, but we present them separately here for clarity.
Patterns in case-expressions consist of a constructor name (or tuple) applied to variables
only. In other words, pattern matching is shallow, considering only constructor name and
arity, and nested patterns are not supported. Currently this choice trades programmer
convenience for more tractable verification; in future work PureCake will support nested
patterns by flattening them early in its compilation pipeline (§ 6.3). The last branch
of case-expression is optionally a catch-all (_ → ce′, omitted from the formal syntax
here for brevity), and each case-expression either must be exhaustive or contain such a
catch-all. In other words, failed pattern matches are not permitted.

Semantic expressions are designed to be as expressive as compiler expressions, but
permit simpler specification of semantics. They specify unary (instead of variadic)
𝜆-abstraction/-application and primitive operations on constructors (instead of case):
testing for name and arity, and indexing arguments. Though semantic expressions do
not specify let-bindings, we will use let x = e1 in e2 as syntactic sugar for (𝜆x. e2) · e1. I
will discuss desugaring of compiler expressions to semantic expressions in § 2.3.4.

2.3 Operational semantics

The semantics of PureLang must cleanly model non-termination and I/O via FFI calls.
Interaction trees [Xia et al. 2020] provide a suitable semantic domain (§ 2.3.1), but
implementing them in HOL4 requires non-trivial changes (§ 2.3.2). We specify the
operational semantics of PureLang semantic expressions in terms of these modified
ITrees (§ 2.3.3), and the semantics of compiler expressions via desugaring (§ 2.3.4).
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2.3.1 Interaction trees (ITrees)

ITrees are a coinductive data type representing the interactions of computations with
their environments. Intuitively (but not technically), they are a coinductive variant of
the free monad, i.e., a potentially infinite series of uninterpreted interactions. Each
interaction is a pair: a computational output and a continuation, which accepts the envir-
onment’s response and produces the rest of computation. This permits straightforward
specification of program behaviour such as non-termination and interaction with the
surround environment.

In Coq, ITrees are the coinductive interpretation of the following grammar:

itree 𝐸 𝑅 ::= Ret (𝑟 : 𝑅) | Tau (𝑡 : itree 𝐸 𝑅) | Vis (𝐴 : Type) (𝑒 : 𝐸 𝐴) (𝑘 : 𝐴→ itree 𝐸 𝑅)

That is, an ITree with event type 𝐸 and return type 𝑅 is either: Ret 𝑟, an immediate halt to
produce 𝑟; Tau 𝑡, a silent step which carries on as 𝑡; or Vis 𝐴 𝑒 𝑘, an output 𝑒 which expects
a response 𝑎 : 𝐴, before continuing as 𝑘 𝑎. Tau nodes are necessary to express silently
diverging computations in Coq without violating its guardedness condition: co-recursive
calls must be guarded by a constructor application. However, as Tau nodes contain no
computational information, ITrees must be equated by weak bisimulation, i.e., two ITrees
which differ only by finite sequences of silent steps are considered equal.

2.3.2 Modified ITrees in HOL4

The definition above is not expressible in HOL4’s simple type theory: 𝐸 is a type-level
function and Vis quantifies over the type 𝐴. We must require 𝐸 to be simply typed, and
avoid quantification over 𝐴 except at the top-level. Foster et al. [2021] faced the same
issue when defining ITrees in Isabelle/HOL. They chose to remove quantification of 𝐴
entirely, instead restricting expressivity by requiring environment responses to share the
same type as program outputs 𝐸.

As HOL4 has no guardedness condition when writing co-recursive functions, we can
further remove Tau; ITrees can now be equated by strong bisimulation, which coincides
with HOL4’s built-in equality. This simplifies proofs of semantics preservation (i.e., ITree
equality) considerably in compiler verification. To ensure we can still express silent
divergence, we add a nullary Div constructor, which we can straightforwardly produce
using non-constructivity of HOL4’s logic (as described in definition 2.2, pg. 27).

The final resulting coinductive grammar is below, replacing Coq’s Roman postfix
type variables for HOL4’s Greek prefix ones.

(𝜀, 𝛼, 𝜌) itree ::= Ret (𝑟 : 𝜌) | Div | Vis (𝑒 : 𝜀)
(
𝑘 : 𝛼→ (𝜀, 𝛼, 𝜌) itree

)
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Formalisation details. In this paragraph, I describe work completed by Magnus Myreen.
HOL4 has no built-in support for defining codatatypes or co-recursive functions in the
style of Coq or Agda. Instead, we define ITrees by carving out a subset of an existing
type itree’, known as the representation type:

(𝜀, 𝛼, 𝜌) itree’ def
= 𝛼 list→ (𝜀, 𝜌) node (𝜀, 𝜌) node ::= Return 𝜌 | Stuck | Event 𝜀

Each function 𝑓 : (𝜀, 𝛼, 𝜌) itree’ represents an ITree of type (𝜀, 𝛼, 𝜌) itree piecewise:
when applied to a list 𝑙 : 𝛼 list, it returns a single node of the tree. In particular, we can
provide successive environment responses from list 𝑙 to Vis continuations in the ITree,
producing the final node indicated by 𝑓 𝑙 : (𝜀, 𝜌) node.

To permit co-recursive definition of an itree, we derive an unfolding function: unfold
iterates a function 𝑓 : 𝛼→ (𝜀, 𝛼, 𝜌) next on a seed value of type 𝛼. Each application of
𝑓 produces a node in the ITree (denoted by a constructor of next), and optionally permits
the iteration to continue. A descriptive equation of unfold is shown below.

Lemma 2.1. ITree unfolding.

⊢ unfold 𝑓 seed =


Ret 𝑟 𝑓 seed = Ret’ 𝑟

Div 𝑓 seed = Div’

Vis 𝑒
(
𝜆𝑎. unfold 𝑓 (𝑔 𝑎)

)
𝑓 seed = Vis’ 𝑒 𝑔

where (𝜀, 𝛼, 𝜌) next ::= Ret’ (𝑟 : 𝜌) | Div’ | Vis’ (𝑒 : 𝜀) (𝑔 : 𝛼→ 𝛼)

Expressivity and usage of HOL4-compatible ITrees. ITrees are inspired by previous
work on monads and algebraic effects/handlers: they generalise the inductive I/O
& action trees [Hancock and Setzer 2000; Swamy et al. 2020] and general/program
monads [Letan and Régis-Gianas 2020; McBride 2015], build on the modularity of the
“freer” monad [Kiselyov and Ishii 2015], and apply a resumption monad transformer [Piróg
and Gibbons 2014] to the delay monad [Capretta 2005] and its general recursion. Each
ITree encapsulates a (potentially infinite) series of uninterpreted events and continuations.
Genericity over the type of events permits compositionality of: specification of semantics
via the ITree monad; construction of interpreters from event handlers; and equational
reasoning. It further enables tailored extraction of executable ITrees: users can flexibly
target language primitives for efficient testing.

ITrees can be considered a Coq-compatible version of the prior constructions
above. Our usage is similarly motivated: we need to model uninterpreted effects,
non-termination, and general recursion in HOL4’s simple type theory. ITrees are con-
veniently expressible in HOL4 with our limited modifications. However, the result is less
expressive than the original: the (simple) types of program outputs 𝐸 and environment



2. purelang and its metatheory 24

𝜀 ::= Observable events
| (ch, s) FFI call

𝛼 ::= Environment responses
| ok s successful FFI return
| failffi FFI error
| divergeffi lack of FFI return

𝜌 ::= Return values
| terminate successful termination
| error runtime type error
| failffi FFI error
| divergeffi lack of FFI return

Figure 2.3. Instantiations of parameters 𝜀, 𝛼, and 𝜌 for the itree type used in PureLang
semantics.

responses 𝐴 are fixed at the top-level. Fortunately, PureLang semantics requires only
fixed types for both (§ 2.3.3). We use our modified ITrees as a convenient semantic
domain only, i.e., we encode the observable behaviour of PureLang programs in the
branching structure of ITrees. We do not specify a compositional semantics using the
ITree monad, or construct interpreters from event handlers (even to the lesser extent
permitted by our modifications). To reason about preservation of semantics in compiler
correctness proofs, we simply equate ITrees using strong bisimulation. Future work
might explore a denotational semantics for PureLang using the ITree monad.

2.3.3 Semantics of PureLang: semantic expressions

We define the semantics of PureLang semantic expressions operationally in three stages.
I summarise these stages below by showing their top-level functions and associated
types, which I describe further in following paragraphs.

1. Functional big-step (clocked) evaluation of a semantic expression e to produce a
weak-head normal form wh:
eval𝑗wh : (𝑗 : num) → e→ wh

2. Unclocked evaluation of an expression to a weak-head normal form:
evalwh : e→ wh

3. Stateful interpretation of IO operations using stack 𝜅 and mutable store 𝜎:
L−,−,−M : wh→ 𝜅→ 𝜎→ (𝜀, 𝛼, 𝜌) itree

The final stage (stateful interpretation) produces an ITree of type (𝜀, 𝛼, 𝜌) itree for the
instantiations of 𝜀, 𝛼, and 𝜌 defined in figure 2.3. In particular, the only externally
observable events 𝜀 produced by PureLang programs are FFI calls: a pair of an FFI
channel name ch and argument 𝑠, both of type string.1 An environment response 𝛼 to an
FFI call is either: successful return of a string, failure, or lack of return (i.e., divergence).
As in CakeML, PureLang FFI functions are written in C: ch is effectively a C function

1Unlike Haskell’s String, PureLang’s string is not a list of characters—rather, an efficient representation
using packed bytes (like Haskell’s Text).
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𝑜𝑝wh ::= Weak-head operations
| conswh cname data constructor/tuple
| monadicwh mop monadic operation

wh ::= Weak-head forms
| 𝑜𝑝wh[ en ] weak-head operation
| lambda x e function
| lit lit literal value
| error runtime type error
| diverge timeout/divergence

Figure 2.4. Weak-head operations 𝑜𝑝wh and normal forms wh.

name, and the various strings are proxies for the low-level byte arrays used to interface
with the C functions (§ 5.1). The observable return values 𝜌 of PureLang are therefore
successful termination, FFI failure/divergence, or runtime type error (crash). The latter
are necessary because the semantics of PureLang is untyped.

Below, I describe each of the three stages listed above.

1. Clocked evaluation. Pure, call-by-name evaluation defined in the functional big-step
style attempts to produce weak-head normal forms, evaljwh e = wh. Intuitively, weak-head
normal forms are expressions with an irreducible outermost part, on which no top-level
reduction can be performed. Weak-head normal forms wh for PureLang are shown in
figure 2.4; diverge indicates a timeout (running out of fuel).

The clocked evaluator is most clearly showcased in the style of an exception monad
in figure 2.5, where error and diverge are considered monadic exceptions and I have
used Haskell-like do-notation to hide monadic operators bind, assert, and tick. All
failed assertions and pattern matches produce runtime type errors. So too do unbound
variables, so the semantics of PureLang effectively considers only closed expressions
(those without free variables). Constructor/tuple/monadic operations and𝜆-abstractions
immediately produce corresponding weak-head normal forms. Sequencing diverges or
crashes whenever its first argument does. Both recursive bindings and 𝜆-applications
substitute (e[e′/x]) only closed terms to avoid variable capture; evaluation is call-by-name.
An eq?-statement expects a constructor, whose name and arity it tests (true/false are
shorthands for cons cname[ ]where cname = true/false respectively). Note that matching
names with mismatching arities result in type errors: constructor names are expected to
be unique with a well-defined arity. Projections also expect a constructor, but enforce
matching constructor names and require sufficient arity to extract the indexed argument.

Literals directly produce lit forms (omitted here), message construction produces a
message literal, and integer addition evaluates each operand to an integer and returns the
sum. Evaluation of other primitive operations is defined similarly. However, PureLang is
a pure language, with exceptions confined to the IOmonad: we must give a reasonable
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bind 𝑥 𝑓
def
=

{
𝑥 if 𝑥 ∈ {error, diverge},
𝑓 𝑥 otherwise.

assert 𝑃 𝑥
def
= if 𝑃 then 𝑥 else error

tick 𝑗 𝑓
def
= if 𝑗 = 0 then diverge else 𝑓 (𝑗 − 1)

evaljwh (var x) def
= error

evaljwh (monadic mop[ en ])
def
=

monadicwh mop[ en ]

evaljwh (seq e1 e2)
def
= do

evaljwh e1; evaljwh e2

evaljwh (letrec xn = en in e) def
= do

assert (freevars en ⊆ xn);
𝑗′← tick 𝑗;
eval𝑗

′

wh

(
𝑒
[

letrec xn = en in en/𝑥𝑛
] )

evaljwh (eq? cname n e) def
= do

cons cname′[ em ] ← evaljwh e;
if cname ≠ cname′ then false;
else assert (𝑛 = 𝑚); true

evaljwh (prim (message ch) [e]) def
= do

lit (str s) ← evaljwh e;
lit (msg ch s)

evaljwh (cons cname[ en ])
def
=

conswh cname[ en ]

evaljwh (𝜆x. e) def
= lambda x e

evaljwh (e1 · e2)
def
= do

lambda x e← evaljwh e1;
assert (closed e2);
𝑗′← tick 𝑗;
eval𝑗

′

wh (e[e2/x])

evaljwh

(
projn cname e

) def
= do

cons cname′[ em ] ← evaljwh e;
assert (cname = cname′ ∧ 𝑛 < 𝑚);
𝑗′← tick 𝑗;
eval𝑗

′

wh em

evaljwh (prim add[e1 e2])
def
= do

lit (int z1) ← evaljwh e1;
lit (int z2) ← evaljwh e2;
lit (int (𝑧1 + 𝑧2))

Figure 2.5. Core clauses of clocked evaluation, eval𝑗wh : (𝑗 : num) → e→ wh
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semantics to out-of-bounds string indexing and division/modulo by zero. The semantics
adjusts indices to remain in-bounds, and returns zero for division/modulo by zero. The
latter is sometimes controversial, but matches the (total) definitions of various theorem
provers and is generally considered conservative.

Clocked evaluation always terminates: on each recursive call, either the clock is
constant and the expression size decreases, or the clock is decremented if the expression
size does not decrease (letrec, 𝜆-application, and proj).

2. Unclocked evaluation. We lift to unclocked evaluation, evalwh e = wh, by classically
quantifying over clock 𝑗: unclocked evaluation produces a weak-head form wh if there is
some clock 𝑗 for which clocked evaluation produces wh without timing out. Otherwise,
clocked evaluation always times out, so unclocked evaluation should produce diverge.

Definition 2.2. Unclocked evaluation.

evalwh e def
=


wh if ∃𝑗. evaljwh e = wh ∧ wh ≠ diverge,

diverge otherwise, i.e., ∀𝑗. evaljwh e = diverge.

There is a moral difference between diverge in the two evaluators: clocked diverge is
really a timeout, where unclocked diverge is true (silent) divergence. This definition of
evalwh is unwieldy, but we can derive clean characterising equations. These are nearly
identical to those in figure 2.5 (pg. 26), but they do not mention superscripted clocks or
tick. For example, equations for 𝜆-application and proj follow:

⊢ evalwh (e1 · e2) = do
lambda x e← evalwh e1;
assert (closed e2);
evalwh (e[e2/x])

⊢ evalwh
(
projn cname e

)
= do

cons cname′[ em ] ← evalwh e;
assert (cname = cname′ ∧ 𝑛 < 𝑚);
evalwh em

3. Stateful interpretation of IO operations. We must model the sequencing, stateful
updates, and I/O of monadic operations monadic mop[ en ]. We use a stack machine
with mutable store. Its states ⟨wh, 𝜅, 𝜎⟩ consist of the weak-head normal form wh being
interpreted, a stack of continuations 𝜅, and mutable store 𝜎. The continuation stack
models monadic sequencing, and the mutable store models stateful operations. Machine
transitions induce an ITree co-recursively, modelling I/O by emitting Vis nodes.

Once again, we use two layers to define the machine’s semantics: clocked and
unclocked. The clocked version, nextNode𝑗 ⟨wh, 𝜅, 𝜎⟩, iterates machine transitions, at-
tempting to produce an element of the next type (lemma 2.1, pg. 23). It defaults to Div’ when
it times out. Classical quantification lifts to the unclocked version, nextNode ⟨wh, 𝜅, 𝜎⟩;
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now Div’ denotes true (silent) divergence. Application of unfold (lemma 2.1, pg. 23)
produces the final co-recursive semantics:

L wh, 𝜅, 𝜎 M def
= unfold

(
nextNode ⟨wh, 𝜅, 𝜎⟩

)
I omit formal descriptions of nextNode𝑗 and nextNode, instead showing descriptive

equations derivable for L−,−,−M in figure 2.6. Diverging and crashing weak-head normal
forms produce Div and Ret error nodes respectively. A bind-statement continues as its
left-hand expression, pushing a bind-continuation onto the stack; conversely a return
attempts to pop a bind-continuation off the stack, ignoring any intervening handle-
continuations, and terminating if the stack is exhausted (𝜀). Here, the bullets (•) denotes
the “holes” formed in the continuations by removing their subexpressions for evaluation.
Like bind, handle produces a handle-continuation frame and raise pops the stack in
search of such a frame, terminating if none is found. Array operations interact with
mutable store: alloc extends the store; len queries an array length; deref queries an array
element; and update stores an array element. Each array operation implicitly returns or
raises a weak-head normal form for further processing; the subscript exception is raised
on an out-of-bounds access. Operation alloc demonstrates the need to include location
literals in semantic expressions. An action produces a Vis node which both contains
the output message of the program and accepts response 𝑟 from the environment.
This response is checked by checkFFI, which terminates on receiving an FFI error,
and constructs the remaining ITree coinductively for a valid response. There is one
subtlety: FFI response lengths are bounded by responseBound, and overlong responses
are considered FFI failures. The need for this restriction is discussed in § 5.1.

Throughout figure 2.6, note the marked absence of Tau nodes during silent steps,
those which make an internal transition of the form L wh, 𝜅, 𝜎 M = L wh′, 𝜅′, 𝜎′ M. In Coq,
these equations would not hold: either a Tau node is required on the right-hand side (i.e.,
. . . = Tau . . .) or we must replace equality (strong bisimulation) with weak bisimulation.

Note too that the equation for bind e1 e2 implies that monadic operations are strict: e1

is always weak-head normalised and statefully interpreted, so all of its stateful and I/O
effects are modelled. Critically, this is the case even if e1 is not used in e2. PureLang I/O
is therefore not lazy; lazy I/O is known to break referential transparency.2

Each PureLang program defines an entrypoint main :: IO (), so the weak-head form
of the entire program is a monadic operation. Therefore, the semantics of a whole
program is specified using the empty continuation stack and empty initial state:

⟦ e ⟧ def
= L evalwh e, 𝜀, ∅ M

2See https://mail.haskell.org/pipermail/haskell/2009-March/021064.html.

https://mail.haskell.org/pipermail/haskell/2009-March/021064.html
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L diverge, 𝜅, 𝜎 M = Div L error, 𝜅, 𝜎 M = Ret error
L bind e1 e2 , 𝜅, 𝜎 M = L evalwh e1 , bind • e2 :: 𝜅, 𝜎 M

L return e1 , bind • e2 :: 𝜅, 𝜎 M = L evalwh (e2 · e1) , 𝜅, 𝜎 M
L return e1 , handle • e2 :: 𝜅, 𝜎 M = L return e1 , 𝜅, 𝜎 M

L return e, 𝜀, 𝜎 M = Ret terminate
L handle e1 e2 , 𝜅, 𝜎 M = L evalwh e1 , handle • e2 :: 𝜅, 𝜎 M

L raise e1 , frame :: . . . :: handle • e2 :: 𝜅, 𝜎 M = L evalwh (e2 · e1) , 𝜅, 𝜎 M
L raise e, 𝜀, 𝜎 M = Ret terminate

𝑙 ∉ domain 𝜎

L alloc (int z) e, 𝜅, 𝜎 M = L return (loc 𝑙), 𝜅, 𝜎
[
𝑙 ↦→ [𝑒 , . . . , 𝑒︸    ︷︷    ︸

max 𝑧 0

]
]
M

evalwh e = lit (loc l) 𝑙 ∈ domain 𝜎

L len e, 𝜅, 𝜎 M = L return
(
int |𝜎(𝑙)|

)
, 𝜅, 𝜎 M

evalwh e = lit (loc l) 𝑙 ∈ domain 𝜎 0 ≤ 𝑧 < |𝜎(𝑙)|
L deref e (int z) , 𝜅, 𝜎 M = L return

(
𝜎(𝑙)[𝑧]

)
, 𝜅 , 𝜎 M

evalwh e = lit (loc l) 𝑙 ∈ domain 𝜎 𝑧 < 0 ∨ 𝑧 ≥ |𝜎(𝑙)|
L deref e (int z) , 𝜅, 𝜎 M = L raise subscript, 𝜅 , 𝜎 M

evalwh e = lit (loc l) 𝑙 ∈ domain 𝜎 0 ≤ 𝑧 < |𝜎(𝑙)|
L update e (int z) e′, 𝜅, 𝜎 M = L return unit, 𝜅 , 𝜎

[
𝑙 ↦→ [. . . . . . . . .︸    ︷︷    ︸

max (𝑧−1) 0

, 𝑒′, . . .]
]
M

evalwh e = lit (loc l) 𝑙 ∈ domain 𝜎 𝑧 < 0 ∨ 𝑧 ≥ |𝜎(𝑙)|
L update e (int z) e′, 𝜅, 𝜎 M = L raise subscript, 𝜅 , 𝜎 M

evalwh e = lit (msg ch s)
L action e, 𝜅, 𝜎 M = Vis (ch, 𝑠) (𝜆𝑟. checkFFI 𝜅 𝜎 𝑟)

checkFFI 𝜅 𝜎 𝑟
def
=


Ret 𝑟 𝑟 ∈ {failffi , divergeffi}
L return (str s′) , 𝜅, 𝜎 M 𝑟 = ok s′ ∧ |𝑠′ | ≤ responseBound
failffi otherwise

Figure 2.6. Derived rules for L−,−,−M, PureLang’s stateful interpreter for monadic
operations. Here, subscript is shorthand for a nullary constructor and bind e1 e2 is

shorthand for monadicwh bind[e1 e2] (similarly for other monadic operations).
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2.3.4 Semantics of PureLang: compiler expressions

Semantics of compiler expressions is defined via desugaring (exp_of) to semantic ex-
pressions in definition 2.3: variadic 𝜆-abstractions/-applications become nested unary
ones; let becomes function application; and case becomes a mixture of if-, eq?-, and proj-
statements. All other cases are simple recursion. To desugar case x = ce of rown we assign
exp_of ce to x and test it against each row of the pattern match (row = cname[ yn ] → ce′)
with if/eq?. If a row matches both constructor name (cname) and arity (n), proj statements
extract constructor arguments, which are assigned to the corresponding pattern variables
(yn) before desugaring the continuation. Again, PureLang is pure and exceptions are
confined to the IO monad: failed pattern matches produce runtime type errors (fail,
which stands for any always-crashing program); PureLang enforces exhaustive pattern
matches (potentially via a final optional catch-all row) to avoid these.

Definition 2.3. Desugaring of compiler expressions.

exp_of (𝜆 xn . ce) def
= 𝜆𝑥1. 𝜆𝑥2. . . . 𝜆𝑥𝑛 . exp_of ce

exp_of (ce · cen)
def
=

(
...(exp_of ce · exp_of ce1) · . . .

)
· exp_of cen

exp_of (let x = ce1 in ce2)
def
= (𝜆x. exp_of ce2) · (exp_of ce1)

exp_of (case x = ce of rown)
def
= let x = exp_of ce in expand𝑥 [ rown ]

expand𝑥 [cname[ yn ] → ce′, rowm ]
def
= if (eq? cname n (var x)) then

let yn = projn cname (var x) in (exp_of ce′)
else expand𝑥 [ rowm ]

expand𝑥 [_ → ce′] def
= exp_of ce′

expand𝑥 [ ]
def
= fail

2.4 Equational reasoning

Haskell programmers rely on equational reasoning to understand code, “stepping
through” program execution by unfolding function definitions and substituting equal
terms. A verified implementation of a Haskell-like language allows us to formalise
and mechanise this intuition, and verify it is preserved through compilation. In this
section, I summarise the formalisation of PureLang’s equational theory: its formulation
and proof of congruence (§§ 2.4.1 and 2.4.2), and its interaction with other standard
equivalences (§ 2.4.3). This formalisation follows a detailed account by Pitts [2012].
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2.4.1 Defining an equivalence

We adopt untyped applicative bisimilarity [Abramsky 1990] as an equivalence relation
on expressions. Intuitively, a relation satisfies applicative simulation if it is closed under
weak-head reduction and usage of any resulting weak-head normal form.

Definition 2.4. Applicative simulation. A binary relation ℛ on closed expressions is an
applicative simulation if, for all closed expressions e1 and e2 such that e1 ℛ e2:

evalwh e1 = lambda x1 e′1 ⇒
∃x2 e′2. evalwh e2 = lambda x2 e′2 ∧ ∀ closed e. e′1[e/x1] ℛ e′2[e/x2]

evalwh e1 = 𝑜𝑝wh[ e1 n ] ⇒
∃e2 n. evalwh e2 = 𝑜𝑝wh[ e2 n ] ∧ ∀ 𝑚 < 𝑛. 𝑒1𝑚 ℛ 𝑒2𝑚

evalwh e1 = lit lit⇒ evalwh e2 = lit lit

evalwh e1 = error⇒ evalwh e2 = error

Note that no restrictions are placed on ℛ when its left-hand argument diverges. Ap-
plicative bisimulations are symmetric applicative simulations. These recover divergence
preservation by totality of evalwh. Applicative similarity (e1 ≲ e2) and bisimilarity (e1 ≃ e2)
are defined as the greatest applicative simulation and bisimulation respectively. In
particular, the definition of applicative (bi)simulation induces a monotone functor, for
which we can derive a greatest fixed point. Applicative similarity is reflexive and
transitive, and applicative bisimilarity is equivalent to two-way applicative similarity. It
is therefore also symmetric, and so an equivalence.

2.4.2 Proof of congruence via Howe’s method

Our relation should also be a congruence: expressions formed from bisimilar subexpres-
sions should also be bisimilar. We define a congruence as a symmetric precongruence,
where a precongruence is transitive and compatible. Compatible relations ℛ satisfy at
least the rules in figure 2.7. Howe’s method [Howe 1996] is a well-studied technique
for establishing congruence. Applicative (bi)similarity is extended to open terms using
closing substitutions, e.g., in the case of open bisimilarity:

xn ⊢ e ≃ e′ def
= freevars e ∪ freevars e′ ⊆ xn ∧ ∀ closed en. e

[
en/xn

]
≃ e′

[
en/xn

]
We define Howe’s construction in figure 2.8. Intuitively, an expression 𝑒 with subex-
pressions 𝑒𝑖 is Howe-related to 𝑒′ if the 𝑒𝑖 are Howe-related to some 𝑒′

𝑖
and replacing

subexpressions 𝑒𝑖 by 𝑒′
𝑖

produces an expression related to 𝑒′.
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(var x) ℛ (var x)
∀𝑚 < 𝑛. em ℛ e′m

(op[ en ]) ℛ
(
op[ e′n ]

) 𝑒 ℛ 𝑒′

(𝜆x. e) ℛ (𝜆x. e′)

e1 ℛ e′1 e2 ℛ e′2
(e1 · e2) ℛ

(
e′1 · e

′
2
) 𝑒 ℛ 𝑒′ ∀𝑚 < 𝑛. em ℛ e′m

(letrec xn = en in e) ℛ
(
letrec xn = e′n in e′

)
e1 ℛ e′1 e2 ℛ e′2
(seq e1 e2) ℛ

(
seq e′1 e′2

) 𝑒 ℛ 𝑒′ e1 ℛ e′1 e2 ℛ e′2
(if e then e1 else e2) ℛ

(
if e′ then e′1 else e′2

)
e ℛ e′

(eq? nm ar e) ℛ (eq? nm ar e′)
e ℛ e′(

projn nm e
)
ℛ

(
projn nm e′

)
Figure 2.7. An inductive definition of compatibility for a relation ℛ.

xn ⊢ (var x) ℛ 𝑒

xn ⊢ (var x) ℛ𝐻 𝑒

∀𝑚 < 𝑗. xn ⊢ em ℛ𝐻 e′m xn ⊢
(
op[ e′j ]

)
ℛ 𝑒

xn ⊢
(
op[ ej ]

)
ℛ𝐻 𝑒

{𝑥} ∪ xn ⊢ e1 ℛ𝐻 e′1 xn ⊢ 𝜆x. e′1 ℛ 𝑒

xn ⊢ (𝜆x. e1) ℛ𝐻 𝑒

xn ⊢ e1 ℛ𝐻 e′1 xn ⊢ e2 ℛ𝐻 e′2 xn ⊢
(
e′1 · e

′
2
)
ℛ 𝑒

xn ⊢ (e1 · e2) ℛ𝐻 𝑒

xj ∪ xn ⊢ 𝑒 ℛ𝐻 𝑒′

∀𝑚 < 𝑗. xj ∪ xn ⊢ em ℛ𝐻 e′m xn ⊢
(
letrec xj = e′j in e′

)
ℛ 𝑒0

xn ⊢
(
letrec xj = ej in e

)
ℛ𝐻 𝑒0

Figure 2.8. Howe’s construction, an inductive relation − ⊢ −ℛ𝐻− defined in terms of a
relation − ⊢ −ℛ−. Simple rules concerning seq, if, eq?, and proj are omitted.
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By construction, ℛ𝐻 is compatible if ℛ is reflexive. If ℛ is also transitive, then
xn ⊢ 𝑒 ℛ 𝑒′ is contained within xn ⊢ 𝑒 ℛ𝐻 𝑒′. We show that ∅ ⊢ − ≲𝐻 − (Howe
applicative similarity on closed terms) is an applicative simulation, and so contained
within applicative similarity, the greatest applicative simulation. Therefore, ≲ and ≲𝐻

coincide for closed expressions. Both are closed under substitutions, so we also have
coincidence for open expressions:

⊢
(

xn ⊢ 𝑒 ≲ 𝑒′
)
⇐⇒

(
xn ⊢ 𝑒 ≲𝐻 𝑒′

)
Because ≲ is reflexive and transitive, it is also compatible and a precongruence. Its
symmetric version ≃ is therefore a congruence. Now, expression equivalence is as follows:

e � e′ def
= freevars e ∪ freevars e′ ⊢ 𝑒 ≃ 𝑒′

2.4.3 Interaction with other equivalences

We define other standard notions of equivalence and prove that expression equivalence
interacts favourably with them. Later, we will use our equational theory to verify PureLang
compiler passes: either by proving some syntactic relation is an applicative simulation
after closing substitution (§ 3.2), or by appealing to equational reasoning (§ 3.4).

𝜶-equivalence. In this paragraph, I describe work completed by Johannes Åman Pohjola.
Intuitively, 𝛼-equivalent expressions differ only in their choices of bound variable names:
formal parameters to functions can be renamed as long as their uses are also updated
consistently. Pen-and-paper formalisations often regard 𝛼-equivalent expressions as
identical, considering only 𝛼-equivalent classes of expressions. However, a mechanical
formalisation of this intuition can be non-trivial [Aydemir et al. 2005].

We define 𝛼-equivalence using perm𝑥𝑦 , which swaps all instances of variables 𝑥 and
𝑦 in an expression (whether bound or free). In particular, 𝛼-equivalence (− =𝛼 −) is the
transitive closure of a relation −ℛ𝛼−, which can swap the variable bound at a single site
while carefully avoiding free variables (its other cases are defined by simple recursion):

y ∉ freevars e

(𝜆x. e) ℛ𝛼 (𝜆𝑦. perm𝑥𝑦 𝑒)

𝑦 ∉ freevars en ∪ freevars em ∪ freevars e

(letrec xn = en , 𝑥 = 𝑒 , xm = em in 𝑒′) ℛ𝛼(
letrec 𝑥𝑛 = perm𝑥𝑦 𝑒𝑛 , 𝑦 = perm𝑥𝑦 𝑒 , 𝑥𝑚 = perm𝑥𝑦 𝑒𝑚 , in perm𝑥𝑦 𝑒′

)
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We will show that 𝛼-equivalence is an applicative simulation after closing substitution,
and so contained within expression equivalence. First, note that substitutions respect
permutation and so closed substitutions preserve 𝛼-equivalence:

⊢ perm𝑥𝑦

(
𝑒
[

en/xn

] )
= (perm𝑥𝑦 𝑒)

[
perm𝑥𝑦 𝑒𝑛/perm𝑥𝑦 𝑥𝑛

]
⊢ 𝑒 =𝛼 𝑒′ ∧ (∀𝑚 < 𝑛. closed 𝑒𝑚 ∧ 𝑒𝑚 =𝛼 𝑒′𝑚) ⇒ 𝑒

[
en/xn

]
=𝛼 𝑒

[
e′n/xn

]
Then, 𝛼-equivalence is preserved by evaluation: 𝛼-equivalent terms result in 𝛼-equivalent
weak-head normal forms. Applicative simulation follows from these.

⊢ 𝑒 =𝛼 𝑒′⇒ (evalwh e) =𝛼 (evalwh e′)

𝜷-equivalence. In this paragraph, I describe work completed in part by Riccardo Zanetti.
We define capture-avoiding substitution (e⟨ en/xn ⟩) as a freshening of bound variables
followed by ordinary substitution:

e⟨ en/xn ⟩ def
= (freshen en 𝑒)[𝑒𝑛/𝑥𝑛]

Here, freshen en 𝑒 renames all bound variables in 𝑒 that occur in the set
⋃

𝑛 freevars 𝑒𝑛 by
using perm. Internally, it maintains a set of variable names to avoid: each bound variable
is renamed to avoid these names, and any uses of the bound variable are appropriately
permuted before recursing with an augmented set of avoided names.

Freshening is a special case of 𝛼-equivalence: freshen en 𝑒 =𝛼 𝑒. We can therefore
prove the following standard 𝛽-equivalences:

⊢ (𝜆x. e) · e′ � e⟨e′/x⟩ ⊢ (letrec xn = en in e) � 𝑒
〈

letrec xn = en in en/𝑥𝑛
〉

Contextual equivalence. Expression equivalence also coincides with contextual equi-
valence (e ∼ e′), which we define as equality of observable semantics (that is, ITree
equality) under all closing contexts.

e1 ∼ e2
def
= ∀ closing 𝒞.

�
𝒞[e1]

�
=

�
𝒞[e2]

�
⊢ e1 ∼ e2 ⇐⇒ e1 � e2

𝒞 ::= • | op[en , 𝒞 , em] | 𝜆x. 𝒞 | 𝒞 · e2 | e1 · 𝒞 | letrec xn = en , 𝑥 = 𝒞 , xm = em in 𝑒 |
letrec xn = en in 𝒞 | seq𝒞 e2 | seq e1 𝒞 | if𝒞 then e1 else e2 | if e then𝒞 else e2 |
if e then e1 else𝒞 | eq? nm ar𝒞 | proj n nm𝒞

Here, contexts 𝒞 are expressions with a single hole (•), and context application 𝒞[e]
replaces that hole with an expression 𝑒, potentially capturing free variables in 𝑒. A
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closing context for an expression 𝑒 is one for which 𝒞[𝑒] is closed.
The right-to-left direction follows from congruence of expression equivalence. We take

the contrapositive to prove the other direction, i.e., given two inequivalent expressions,
we construct a context which distinguishes them:

⊢ e1 � e2 ⇒ ∃ closing 𝒞.
�
𝒞[e1]

�
≠

�
𝒞[e2]

�
To construct a context, we must first sufficiently “apply” the weak-head normal forms
produced by evaluating e1 and e2: the assumed inequivalence may arise after several steps
of applicative simulation. At this point, nearly all inequivalences are easily distinguished.
To distinguish messages, we pass them to action to produce differing Vis nodes. To
distinguish inequivalent store locations 𝑙 and 𝑙′, we rely on our mechanisation of store
locations as natural numbers which are sequentially allocated. Without loss of generality
take 𝑙 < 𝑙′ and construct a context which allocates 𝑙 + 1 arrays: in this context, a lookup
of location 𝑙 is valid but 𝑙′ is out-of-bounds.

Equivalences and monads. Our formalisation of expression equivalence concerns
only pure evaluation, not stateful interpretation of monadic operations. Monad laws
such as bind (return e) e′ = e′ · e trivially do not hold for expression equivalence, as the
action of evalwh produces different weak-head forms on each side in general.

However, this means that monad laws are not valid with respect to contextual
equivalence either. Consider the following expressions:

bind (return true) (𝜆x. return unit) bind (return false) (𝜆x. return unit)

We may expect contextual equivalence: the differing booleans are ignored to produce a
unit, so these terms should be extensionally indistinguishable. However, we formalise
monadic mop as cons cname with reserved cnames in PureLang: we can therefore project
out the inequivalent booleans with a distinguishing context, proj0 bind •. Other monad
laws do not hold because we can construct similarly distinguishing contexts.

If we forbid projection out of monadic operations, such monad laws hold for contextual
equivalence but not expression equivalence. In other words, the two no longer coincide:
all expression equivalences remain contextual equivalences, but not vice versa.

Even without this modification, we can still verify optimisations which manipulate
monadic operations (e.g., re-association of bind) using simulation proofs. This is because
contextual equivalence is not necessary to prove semantics preservation for whole
programs: it requires equivalent semantics under all closing contexts, not just the ones
found in the program. For example, the programs above are contextually inequivalent
but have identical semantics.
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2.5 Type system

PureLang has a standard Hindley-Milner type system [Hindley 1969; Milner 1978],
permitted by its lack of e.g. type classes. However, we require an unusual proof of type
soundness due to tensions between non-strict semantics defined via desugaring and
exhaustive pattern matches. In this section, I briefly review the type system and describe
its non-standard soundness proof.

Typing judgements are defined over compiler expressions: Γ; Σ ⊢cns ce : 𝜏. A
standard typing environment Γ gives a type scheme (𝜎 ::= ∀𝛼 . 𝜏) for each free variable
in ce, store typing Σ gives types for locations 𝑙 in the mutable store, and the judgement
is parametrised over a constructor environment cns which both provides type schemes
for data/exception constructors and specifies exhaustive sets of constructors for each
type (ensuring non-exhaustive pattern matches without a catch-all row are considered
ill-typed). In the style of the ML language family, exceptions are monomorphic and
belong to an extensible sum type.

Type soundness must be phrased with respect to semantic expressions (§§ 2.2 and 2.3).
We consider a semantic expression e well-typed if there is some well-typed compiler
expression ce which desugars to it (top); we then lift typing judgements to weak-head
normal forms and aim to prove type soundness for unclocked evaluation (bottom, here ⊬
denotes an unproven theorem statement).

Γ; Σ ⊢cns e : 𝜏 def
= ∃ce. exp_of ce = 𝑒 ∧ Γ; Σ ⊢cns ce : 𝜏

⊬ cnsOK? cns ∧ Γ; Σ ⊢cns e : 𝜏 ⇒ Γ; Σ ⊢cns evalwh e : 𝜏

That is, in a well-formed constructor environment (cnsOK?), well-typed semantic ex-
pressions should evaluate to well-typed weak-head normal forms. Here, well-formed
constructor environments are those which contain unique constructor names whose type
schemes are closed and do not refer to undefined types. This statement encapsulates
standard progress and preservation: evaluation must produce a weak-head normal form,
which cannot be the ill-typed error. Note that diverge is always well-typed.

However, this proof is doomed due to case-statements, which desugar into nested
if-/eq?-/proj-statements (definition 2.3, pg. 30). A successful pattern match substitutes
a bare proj-statement into the continuation expression, e.g.:

⊢ evalwh (exp_of ce) = cons nm[e] ⇒

(evalwh ◦ exp_of)
(
case x = ce of nm[y] → ce′

)
=

evalwh

(
(exp_of ce′)

[
cons nm[e]/x

] [
proj0 nm (cons nm[e]) /y

] )
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But a proj-statement can only be produced by desugaring a case-statement, and well-
typed case-statements must be exhaustive; in other words, proj-statements are only
well-typed when several of them are found together (the result of desugaring an
exhaustive pattern match). A bare proj-statement must be ill-typed in general, because
when not guarded by sufficient eq?-statements it can easily produce a type error (§ 2.3.3).
This reduction therefore violates type preservation: its left-hand side is well-typed, but
its right-hand side may be ill-typed due to the substitution of variables for ill-typed proj
statements. Any attempted inductive proof of the above type soundness statement will
be unable to fulfil the preconditions of the inductive hypothesis for case-statements.

We must prove type soundness in a non-standard way. We define a syntax of “typing
expressions” tce, adding a single safeproj-statement to compiler expressions ce, which
desugars as follows:

exp_of
(
safeprojm

n cname tce
) def
= if eq? cname m (exp_of tce)

then projn cname (exp_of tce)
else ⊥

That is, it checks if its input constructor matches in name and arity before projecting out
arguments. Use of the always-diverging ⊥ ensures that a bare safeproj never produces a
type error, so we can give it a typing rule:

Γ; Σ ⊢cns tce : Type id 𝜏j

lookupcns cname = ∀𝛼 𝑗 . 𝜏1 → . . .→ 𝜏n → . . .→ 𝜏m → Type id 𝛼 𝑗

Γ; Σ ⊢cns safeprojm
n cname tce : 𝜏n[𝜏j/𝛼 𝑗]

Typing expression tce must be well-typed as a constructor of type identifier id applied
to 𝑗 type arguments 𝜏j. The cname specified by safeproj should be in the constructor
environment with a type scheme which accepts 𝑚 expression arguments to produce the
same type identifier id applied to the generalised type variables 𝛼 𝑗 . Then, application of
safeproj𝑚𝑛 selects the 𝑛th expression argument, whose type is given by instantiating 𝛼 𝑗

with the appropriate 𝜏j in the type of the 𝑛th argument of cname’s type scheme.
We desugar tce-flavoured case to safeprojs instead of projs in definition 2.3 (pg. 30)

and lift the remaining typing rules up to typing expressions. Now we can derive type
preservation by construction:

⊢ cnsOK? cns ∧ Γ; Σ ⊢cns tce : 𝜏 ⇒ Γ; Σ ⊢cns evalwh (exp_of tce) : 𝜏

We lift typing judgements to states of the stack machine which interprets monadic
operations (§ 2.3.3), and so show that nextNode? and nextNode are type-preserving. This
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is mostly mechanical; one interesting detail is the typing of continuation stacks. When
a stack consists of a bind-continuation followed by a handle-continuation, bind • e ::
handle • e′ :: 𝜅, we must ensure the types returned by 𝑒 and 𝑒′ are equally compatible
with the rest of the stack, 𝜅. This is because the “current” monadic operation may return
normally (passing to the bind-continuation) or raise an exception (passing directly to
the handle-continuation).

Type-preservation of nextNode directly implies a coinductive safety property on
ITrees: safe_itree denotes a type-safe ITree, which cannot produce a type error no matter
the environment response(s) supplied to it.

Definition 2.5. Type-safety for ITrees.

𝑟 ≠ error

safe_itree (Ret 𝑟) safe_itree Div

∀𝑟. safe_itree (𝑘 𝑟)

safe_itree (Vis 𝑒 𝑘)

However, we must transport safety from typing expressions to compiler expressions.
Using our equational theory (§ 2.4), we show that any compiler expression ce is equivalent
to its injection into typing expressions (tcexp_of) after desugaring:

⊢ wf? ce⇒ exp_of ce � exp_of (tcexp_of ce)

We know that equivalence implies equal ITrees, and so equal safety properties. This
equivalence holds because desugaring both exp_of ce and tcexp_of ce produces nearly
identical semantics expressions, except projs on the left become safeprojs on the right.
Each such proj/safeproj is guarded by eq? (definition 2.3, pg. 30), and in this context
they have equal semantics. The precondition wf? asserts that expressions are syntactically
well-formed (e.g., no empty case-statements), and is guaranteed by well-typing of
tcexp_of ce.

Finally, type soundness states that the injection of a compiler expression into a
well-typed typing expression induces a safe semantics.

Theorem 2.6. Type soundness.

⊢ cnsOK? cns ∧ ∅; ∅ ⊢cns tcexp_of ce : IO 𝜏⇒ safe_itree ⟦ exp_of ce ⟧

Empty type environment and store typing imply that ce is closed and does not mention
any store location 𝑙 (though it may allocate fresh ones). The type of tcexp_of ce must be
monadic: recall that the entry point to a PureLang program is a definition main :: IO ().
Note that the indirection through typing expressions tce is just a proof technique; they
do not appear in the compiler implementation.
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Chapter 3

Compiler front end

In this chapter, I describe the front end of the PureCake compiler. Its indentation-sensitive
parsing expression grammar (§ 3.1) is inspired by Adams [2013] and the CakeML parser.
Binding group analysis sorts top-level functions to minimise mutual recursion (§ 3.2).
Verified type inference relies on a non-standard, two-phase algorithm: first all typing
constraints are generated, then later solved (§ 3.3). Demand analysis (§ 3.4) uses seq to
enforce eager evaluation of expressions whose values are required.

3.1 Parsing expression grammar (PEG) parsing

In this section, I describe work completed by Michael Norrish.

Parsing converts textual source files into PureLang compiler expressions ce (figure 2.2,
pg. 20). To handle Haskell-like indentation-sensitivity, we marry CakeML’s parser with
prior work on indentation-sensitive context-free grammars [Adams 2013] to produce a
novel indentation-sensitive parsing expression grammar.

Prior work: CakeML’s parser

CakeML’s parser is based on a formalisation of parsing expression grammars in Coq [Ko-
prowski and Binsztok 2011]. PEGs closely resemble context-free grammars (CFGs), but
are unambiguous by construction. The right-hand sides of their production rules consist
of parsing expressions, which enforce ordered choice and greedy repetition (i.e., longest
repetition). Negation1 effectively permits unlimited look-ahead and backtracking: a
negation-guarded expression is tested without consuming input. This lack of ambiguity
makes PEGs inherently executable, and we can define the semantics of a given PEG
as the execution of a deterministic state transition system on an input string: either it

1Conjunction is often considered, but can be implemented in terms of negation.
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terminates to accept/reject the string, or it diverges due to left-recursion. Koprowski
and Binsztok [2011] further verify a simple syntactic well-formedness check to guarantee
totality: well-formed PEGs have no left-recursion and so their semantics must terminate
on all input strings.

CakeML ports this work to HOL4, implementing a stack-based tail-recursive parser
which precisely executes PEG semantics for well-formed PEGs. CakeML’s PEG is proved
well-formed, and verified sound and complete with respect to CakeML’s official CFG:
successful PEG parses have corresponding CFG parse trees, and each CFG parse tree can
be found by PEG parsing. Together with totality of well-formed PEGs, this implies that
CakeML’s CFG is unambiguous and is implemented by its PEG parsing.

Prior work: indentation-sensitive context-free-grammars

Adams [2013] augments traditional CFG productions (𝑁 → 𝑋1 . . . 𝑋𝑛) with indentation
relations: each symbol 𝑋𝑖 on the right-hand side is annotated to describe how its
indentation relates to that of the non-terminal 𝑁 .

The indentation of a terminal is simply its column number; the indentation of a non-
terminal does not necessarily have a physical meaning, but often indentation-sensitive
CFGs are written so that it refers to the leftmost column in which any token of the
fully-parsed non-terminal appears. For practical languages, it often suffices to consider
only the four relations below.

for production 𝑁 → 𝑋
ℛ1
1 𝑋

ℛ2
2 . . . 𝑋

ℛ𝑛
𝑛

∀𝑖. ℛ𝑖 ∈ {=, >, ≥, ⊛ } ∧ (indentation 𝑋𝑖) ℛ𝑖 (indentation 𝑁)
where =, >, ≥ are standard and ∀ 𝑥 𝑦. 𝑥 ⊛ 𝑦 (i.e., a universal relation)

This work: indentation-sensitive parsing expression grammars

We augment CakeML’s parsing expressions with the indentation relations above. The
resulting PEG semantics tracks an indentation predicate, the possible indentations of the
current non-terminal. This is represented symbolically as one of four forms: a closed
interval [𝑖 . . . 𝑗], a lower-bounded set [𝑖 . . . ], anywhere (N), or nowhere (∅). The latter
effectively indicates an indentation error.

Intuitively, indentation predicates are used to define PEG semantics as follows. Let
𝑁 be the current non-terminal with production 𝑁 → . . . 𝑋

ℛ𝑖

𝑖
. . ., and 𝑃𝑁 be the current

indentation predicate. When starting the execution of the production for 𝑋𝑖 , we initialise
its predicate 𝑃𝑋𝑖

by considering the possible indentations permitted by the combination
of relation ℛ𝑖 and predicate 𝑃𝑁 (i.e., the parent production’s predicate). When ending
the execution of the production for 𝑋𝑖 , we update 𝑃𝑁 by composing it with the resulting
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𝑃𝑋𝑖
and check it for validity (i.e., ensure the composition does not return ∅).
As in CakeML, we implement a tail-recursive parser which executes the indentation-

sensitive semantics. We define a well-formed PEG for PureLang, ensuring our parser
terminates on all inputs.

Abstract syntax to compiler expressions. After indentation-sensitive parsing, trans-
forming AST to compiler expressions ce is mostly standard. The definitions of each
PureLang program (one of which must be main) are combined into a single letrec:
letrec def 1; . . . ; def 𝑛 in main. Data type declarations (using data, only at the top-level)
are passed separately to type inference (§ 3.3); the compiler only needs them in the last
stage of compilation to CakeML (§ 5).

Future directions. Unlike CakeML, PureLang has no CFG to verify our PEG against.
Testing shows that we accept many well-formed Haskell-like programs (§ 6.1), but
specifying a CFG would provide stronger guarantees. Traditional PEGs should be
equivalent to indentation-sensitive ones with always-universal (⊛) indentations, but we
have not verified this.

3.2 Binding group analysis

Binding group analysis transforms a PureLang program from a single letrec-statement to
nested let-/letrec-statements, partitioning bindings into minimally mutually recursive
groups without changing behaviour. This simplifies both type inference (§ 3.3) and
future optimisation passes.

To preserve semantics, bindings must be nested so that the variables on which each
definition depends are either: defined higher up in the nesting; or defined at the same
time in mutual recursion. In other words, no definition should depend on variables which
are defined deeper in the nested structure. For example, in letrec . . . 𝑥 = 𝑒𝑥 ; . . . ; 𝑦 =

𝑒𝑦 . . . in . . ., the binding 𝑦 = 𝑒𝑦 can only be moved above 𝑥 = 𝑒𝑥 if 𝑒𝑦 does not depend
on 𝑥. At best, the two can appear in mutual recursion (as they are currently).

Immediate dependencies (− uses −) are apparent from free variables, and transitive
closure (− uses+ −) gives all dependencies. Dependencies induce a partial order:

𝑥 uses 𝑦
def
= 𝑦 ∈ freevars 𝑒𝑥 𝑥 ≤ 𝑦

def
= 𝑦 uses+ 𝑥 𝑥 = 𝑦

def
= 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥

Binding group analysis is almost akin to a standard topological graph sort, where
definitions are nodes in the graph and the partial order provides directed edges. If
this graph is acyclic, topological sort produces a sequence of appropriately ordered
individual bindings. However, mutual recursion produces cycles in the graph; so we
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employ a pseudo-topological sort to produce a sequence of binding groups. Bindings
appear in groups which are no earlier than those of their dependencies, and appearance
in the same group represents mutual recursion.

The overall pass can be expressed as the following pseudocode:

bindingGroups (letrec xn = en in e) def
= let 𝒢 =

⋃
𝑚{xm → xj | xj ∈ freevars em} in

let 𝒢+ = transitiveClosure 𝒢 in

let bindings = pseudoTopological 𝒢+ in

nest bindings 𝑒

pseudoTopological ({𝑥} ∪ 𝒢) def
= let (lt, eq, gt) = partition 𝑥 𝒢 in

pseudoTopological lt ++ [eq] ++ pseudoTopological gt

nest [xn = en , . . . , xm = em] 𝑒
def
= letrec xn = en in . . . in letrec xm = em in 𝑒

A graph of immediate dependencies (𝒢) is derived from free variables, and then
transitively closed. The resulting graph (𝒢+) is three-way partitioned with respect to
one of its bindings 𝑥 to produce subgraphs of those bindings which are less, equal, and
greater than 𝑥 according to the dependency partial order. Recursion on lesser/greater
bindings sorts them into binding groups, and in the final sequence the equal bindings
form a single binding group. Nested letrec-statements are produced directly from this
binding group sequence.

The initial binding group analysis occurs before type inference (§ 3.3), but we perform
some post-processing after type inference: we delete unused bindings, and convert
non-recursive, singleton letrec-bindings to let. We perform these steps together after type
inference to ensure that dead code is still type-checked. The following rules illustrate
this clean-up:

𝑥𝑛 ∉ freevars 𝑒

letrec xn = en in e clean−−→ e

x ∉ freevars e

letrec x = e in e′ clean−−→ let x = e in e′

Implementation details. Before binding group analysis we remove shadowed bindings:
if 𝑥 is defined twice within a single letrec, the first definition is not accessible and can be
safely deleted. Our implementation of pseudoTopological is actually tail-recursive, but
presented otherwise here for simplicity. Graphs are represented using HOL4’s functional
data structure for gappy arrays: a dependency graph is an array of arrays of natural
numbers, i.e., each binding is assigned an index, at which an array of its dependencies are
stored. Therefore, we carry mappings to convert between bindings and natural numbers.
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Breadth-first search gives transitive closures of graphs, by mapping a fold operation over
the tree-like structure of the functional array.

Verification

We prove this pass sound entirely within our equational theory (§ 2.4).
First, we verify the pseudo-topological sort in stages. It is straightforward to show

that transitiveClosure correctly computes transitive closures, and that partition produces
correct partitions. Correctness of pseudoTopological follows from correctness of partition:

⊢ pseudoTopological 𝒢 = bs ++ [𝑦1 , . . . , 𝑦𝑛] ++ . . .⇒
(∀𝑥. 𝑥 ∈ bs ⇐⇒ 𝑥 <𝒢 𝑦𝑛) ∧ (∀𝑦𝑚 𝑦𝑙 . 𝑦𝑚 =𝒢 𝑦𝑙)

That is, bindings sequenced before the 𝑦𝑛 must be lesser according to the partial order
represented by the graph 𝒢; all the 𝑦𝑛 must be equal.

To prove expression equivalence, we define a valid split of recursive bindings xn = en

into ym = e1 m and wj = e2 j such that all e1 m do not depend on any wj. We construct a
syntactic relation which can validly split letrecs and otherwise recurses through PureLang
syntax; we show that this is an applicative simulation for closed expressions and lift this
to expression equivalence by closing substitution.

⊢ valid_split xn = en ym = e1 m wj = e2 j ⇒
letrec xn = en in e � letrec ym = e1 m in

(
letrec wj = e2 j in e

)
All that remains is to show that pseudo-topological sort produces nested valid splits,
which is straightforward given its correctness proof.

3.3 Constraint-based type inference

In this section, I briefly review Top, a Hindley-Milner constraint-based type inference
framework, and verify PureCake’s proof-of-concept implementation of Top to demon-
strate its applicability to verified compilation. Top is used in the Helium teaching
compiler [Heeren 2005; Heeren et al. 2003]: Helium’s open-source, near-complete im-
plementation of Haskell 98 provides a roadmap to port its features to PureCake in
future work. However, such constraint-based type inference has never been mechanically
verified.

Hindley-Milner type systems are popular due to their decidable type inference, but
well-studied algorithms𝒲, 𝒥 , andℳ [Lee and Yi 1998] are notorious for impenetrable
type errors. Their fixed-order interleaving of AST traversal and type unification lead
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to known weaknesses: type errors are often detected far from the code which causes
them and typically towards the end of a program; error reporting is restricted by
the order in which types are unified. Therefore, error messages become difficult to
understand without significant experience or knowledge of the inference algorithm.
ℳ improves on𝒲 with better localisation of type errors by recording the expected
type of the current expression according to its context, but is still subject to ordering
biases. Constraint-based type inference has been proposed as a generalisation of these
algorithms [Heeren et al. 2022] which enables clear, precise error messages. Top avoids
inherent biases in standard algorithms by operating in two phases: a single AST traversal
collects typing constraints, which are only solved post-traversal. This permits flexible
application of solving strategies and heuristics; algorithms𝒲 andℳ are equivalent
to predefined solving strategies within Top. HM(𝑋) [Odersky et al. 1999] is another
example of constraint-based inference, generic over a signature 𝑋 to permit proof of
soundness for a variety of ML-like type systems at once. This generality is unnecessary
for PureCake, so we focus on the Haskell-tailored Top and its well-tested implementation
in Helium.

A full discussion of the benefits of Top and comparison with related approaches can
be found in prior work [Heeren 2005; Heeren et al. 2022]. In our setting, separating im-
plementation of constraint generation and solving also modularises verification: solving
more efficiently or with a different strategy does not require significant re-verification
of constraint generation (and vice versa). In the remainder of this section, I provide
an intuitive overview of Top’s constraints, and summarise our verification. I assume
familiarity with Hindley-Milner type systems: unification, parametric polymorphism,
type schemes, and type scheme specialisation.

Hindley-Milner type systems introduce parametric polymorphism with rule HMLet
below, which becomes unsound without the restriction that free variables in the typing
context cannot be generalised: these are monomorphic, representing a constant but
unknown type, as opposed to polymorphic variables which can represent any type.
Traditional one-pass algorithms first infer the type of ce1 fully, generalise it with respect
to monomorphic type variables, and then use the result to infer the type of ce2.

Γ ⊢HM ce1 : 𝜏1 𝛼𝑛 ∉ Γ Γ, 𝑥 : ∀𝛼𝑛 . 𝜏1 ⊢HM ce2 : 𝜏2

Γ ⊢HM let x = ce1 in ce2 : 𝜏2
HMLet

Two-phase inference must generate constraints for ce2 without type information for
ce1. Later, during solving, it must soundly generalise 𝜏1 with respect to the relevant
monomorphic type variables. Both Top and HM(𝑋) generate expressive constraints that
“remember” monomorphic type variables for solving.
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The constraint generation judgement below reads “for monomorphic type variables
M, ce has type 𝜏 in constructor environment cns subject to assumptions 𝐴 and constraints
C”. Here, M is a set of monomorphic type variables. Assumptions 𝐴 map term variables
to sets of types: we will see that the types in 𝐴(𝑥) are those assigned to 𝑥 when traversing
ce, and we write 𝑥 : 𝜏 ∈ 𝐴 to mean 𝜏 ∈ 𝐴(𝑥). Constraint sets C contain unification and
implicit instance constraints. Each implicit instance constraint carries a set of monomorphic
type variables; we will soon see that this is how Top soundly “remembers” monomorphic
type variables for later use in solving.

Constraint generation: M ⊢ ce : 𝜏 ⇒cns 𝐴 ; C

Assumptions: 𝐴 : 𝑥 → 𝜏 set

Constraints: 𝑐 ::= 𝜏1 ≡ 𝜏2 (unification) | 𝜏1 ⪯M 𝜏2 (implicit instance)

Figure 3.1 shows selected constraint generation rules. Constraint generation is bottom-
up except for management of monomorphic variables 𝑀. A free term variable var x
is assigned a fresh type variable, which is recorded in the assumptions 𝐴 (TopVar).
This assumption will bubble up to the binding which introduces 𝑥: as each use of
𝑥 must share the same type, we remove assumptions on 𝑥 and unify all the usage
types (e.g., TopLam). Note that assumptions are created only by TopVar, so each 𝑥 : 𝜏 ∈ 𝐴
represents a single usage of 𝑥 in ce and 𝜏 is always a fresh type variable. Rule TopLam
augments monomorphic type variables top-down: fresh types 𝛼𝑛 are introduced for the
𝜆-abstracted xn, which are monomorphic within the subexpression ce.

The rule TopLet records the “current” monomorphic type variables in implicit
instance constraints. Intuitively, each usage of 𝑥 in ce2 produces an assumption 𝑥 : 𝜏 in
𝐴2, and each such 𝜏 must soundly specialise the scheme obtained by generalising 𝜏1, the
type of ce1. The semantics of implicit instance constraints records this precisely: each 𝜏

solves to some 𝜏′ which specialises the scheme obtained by sound generalisation of 𝜏′1
(the solved version of 𝜏1) with respect to the free type variables in M′ (the solved version
of M). This imposes a restriction on constraint solving: implicit instance constraints
𝜏1 ⪯M 𝜏2 can only be solved once 𝜏2’s generalisable variables (freevars(𝜏2) −𝑀) are stable
(i.e., cannot be changed by solving any further constraints). This will depend on the
variables free in other constraints. This restriction is inherent to Hindley-Milner type
systems; Top permits maximum possible flexibility in solving order.

The remaining rules follow from the intuition captured in these three; a 𝜆-application
ce1 · ce2 also produces a unification constraint 𝜏1 ≡ 𝜏2 → 𝛼 (where 𝛼 is fresh): the type
of ce1 must be a function whose argument type matches the type of ce2.

A simple solving strategy produces a substitution consistent with constraint semantics
(when successful). Each constraint is solved in turn, and the remainder updated by the
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M ⊢ var x : 𝛼 ⇒cns [x : 𝛼] ; ∅
TopVar

𝛼n ,M ⊢ ce : 𝜏′ ⇒cns 𝐴 ; C
M ⊢ (𝜆 xn . ce) : (𝛼n → 𝜏′) ⇒cns 𝐴 \ xn ; C ∪ ⋃

𝑛 {𝜏 ≡ 𝛼n | xn : 𝜏 ∈ 𝐴}
TopLam

M ⊢ ce1 : 𝜏1 ⇒cns 𝐴1 ; C1 M ⊢ ce2 : 𝜏2 ⇒cns 𝐴2 ; C2 TopLet

M ⊢ (let x = ce1 in ce2) : 𝜏2 ⇒cns 𝐴1 ∪ 𝐴2 \ x ; C1 ∪ C2 ∪ {𝜏 ⪯M 𝜏1 | x : 𝜏 ∈ 𝐴2}

Figure 3.1. Selected Top constraint generation rules.

resulting substitution. Unification constraints 𝜏1 ≡ 𝜏2 are solved by unifying 𝜏1 and 𝜏2.
Implicit instance constraints are solved once 𝜏2’s generalisable variables are stable; then
these variables are freshened to produce 𝜏′2 which is unified with 𝜏1.

3.3.1 Implementation and verification details

We specify Top’s constraint generation rules and prove their soundness with respect to
PureLang’s type system (§ 2.5). Existence of a type substitution 𝑠 consistent with the
generated constraints (i.e., one which solves them) implies well-typing in a context which
generalises the assumed types of free term variables. Informally:

Lemma 3.1. Soundness of constraint generation.

⊢ M ⊢ ce : 𝜏 ⇒cns 𝐴 ; C ∧ 𝑠 solves 𝐶 ∧ cnsOK? cns ∧(
∀ 𝑥 : 𝜏 ∈ 𝐴. 𝑠Γ(𝑥) generalises 𝑠𝜏

)
∧ freetyvars (𝑠M) = freetyvars (𝑠Γ)

⇒ Γ; ∅ ⊢cns tcexp_of ce : 𝜏

The set of solved monomorphic variables must equal the set of free type variables in the
typing context to ensure that generalisation of free type variables agrees in both systems.
In reality, we prove a more verbose theorem which reconciles nameless de Bruĳn indices
(used to formalise typing rules naturally) and unification variables (used to formalise
inference). In particular, our theorem is stated in terms of substitutions which close
types with respect to unification variables, leaving only de Bruĳn indices. Its proof
handles the permeative bookkeeping associated with these closing substitutions, and the
interactions between substitutions of unification variables and de Bruĳn indices. Some
of this bookkeeping is required in CakeML too, but the explicit equality above between
free unification variables in M and de Bruĳn indices in Γ is particularly problematic.

Constraint generation is implemented within a state-exception monad which provides
fresh unification variables, and we prove that successful algorithm outputs are sound
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with respect to Top rules. To provide unification, we instantiate HOL4’s reusable
triangular unification [Kumar and Norrish 2010] to PureLang types. A top-level function
infer implements a simple syntactic check which establishes cnsOK?, before composing
constraint generation and solving. We prove it sound by first verifying that successful
solving produces consistent substitutions, and then composing with lemma 3.1.

⊢ solve 𝐶 = OK 𝑠 ⇒ 𝑠 solves 𝐶

⊢ infer𝑐𝑛𝑠 ce = OK⇒ ∃𝜏. ∅; ∅ ⊢cns tcexp_of ce : IO 𝜏

In other words, all programs accepted by infer must be well-typed and so type-safe by
type soundness (theorem 2.6, pg. 38). All ill-typed programs are therefore rejected. Note
that we do not prove completeness of type inference, nor do we intend to. PureLang aims
to be a Haskell-like language, and in general Haskell type inference is not complete due
to its polymorphic recursion and rich type system. Testing shows that type inference
accepts all of the well-typed programs we have written so far (§ 6.1).

3.3.2 Future directions

Our implementation of Top is only a proof-of-concept, demonstrating its applicability to
mechanised compiler verification. We have not yet implemented enforced type signatures,
and both generation and solving are simplistic, lacking the orderable constraint trees that
Helium uses to store its constraints or the type graphs that permit completely unbiased
solving and precise error messages. Modular verification of generation and solving will
allow us to incorporate these gradually.

To simplify proofs, we could use only named representations of type variables in
typing rules (i.e., converting de Bruĳn indices into unification variables). Currently types
are first-order only (quantification only at the top-level in type schemes), so variable
capture is minimised. However, this could hinder future efforts to add higher-order
types with local type quantification. Further afield, we intend to support type classes
and modules (§ 6.3).

3.4 Demand analysis

In this section, I describe work completed mostly by Samuel Vivien.

Compilation of lazy code to a strict language produces thunks: suspended computations
on the heap. However, excessive laziness can lead to well-known bottlenecks on space
usage. Consider the factorial function from figure 2.1 (pg. 19), expressed below as a
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pseudo-semantic expression:

letrec fact acc x = if var x < 2 then var acc else (var fact) · (var acc × var x) · (var x − 1)

This has space complexity of Θ(𝑛): each recursive call allocates a suspended computation
of var x × var acc as a thunk, which is not evaluated until inspected during the final
recursive call. However, acc can be evaluated eagerly without changing program
behaviour, reducing space complexity to 𝒪(1). The goal of demand analysis is to detect
this and annotate code using seq (i.e., letrec fact x acc = seq (var acc) . . .), allowing
future optimisations to minimise such unnecessary laziness.

Our strategy is as follows. First, we formalise a semantic notion of demands: expression
𝑒 demands variables 𝑥𝑛 if eager evaluation of the variables does not change 𝑒’s semantics.
Second, we derive propagation rules which describe sound ways to propagate demands
through PureLang expressions. Third, we implement an analysis function which traverses
expressions bottom-up: it gathers and propagates demands according to the propagation
rules, and transforms code by inserting seq annotations for demanded variables.

More precisely, we define demands as an equivalence between an expression 𝑒 and
its prefixing by the eager evaluation of variables 𝑥𝑛 using seq:

e demands xn
def
= 𝑒 ≈ seqs var xn 𝑒 seqs en 𝑒

def
= seq e1

(
seq e2 . . . (seq en 𝑒)...

)
This definition justifies sound insertion of seq annotations by construction. Following
prior work [Sergey et al. 2014], it is phrased using ≈, a weaker variant of our equational
theory (�, § 2.4) which does not distinguish between runtime type errors and silent
divergence. In particular, for ≈ the final line in definition 2.4 (pg. 31) is removed.

Figure 3.2 shows some non-trivial propagation rules we have derived2 from this
definition: seq propagates all demands from its subexpressions; let y = e1 in e2 inherits
demands from e2 except for the bound variable 𝑦, and from e1 only if e2 demands 𝑦;
if e then e1 else e2 inherits the demands of 𝑒 and any demands shared by e1 and e2. The
propagation rule for seq demonstrates the need for ≈ in the definition of demands: using
� instead prevents propagation of demands from e2 due to the counterexample below
(here, ⊥/fail are any always-diverging/-crashing programs respectively).

⟦ let x = ⊥ in seq fail (var x) ⟧ = Ret error

⟦ let x = ⊥ in seq (var x) (seq fail (var x)) ⟧ = Div

This propagation is essential: otherwise, each time we annotate some e2 with some
seq e1, we would have to discard the demands of e2.

2Note that there are infinitely many derivable rules; in practice, we rely on a finite number.
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e1 demands xn e2 demands yn

(seq e1 e2) demands (xn ∪ yn)
e2 demands xn

(let y = e1 in e2) demands (xn \ 𝑦)

e1 demands xn e2 demands y
(let y = e1 in e2) demands xn

e demands wn e1 demands xn e2 demands yn

(if e then e1 else e2) demands
(
wn ∪ (xn ∩ yn)

)
Figure 3.2. Derived propagation rules for demands.

To prove that demand analysis preserves semantics, we must further demonstrate
that it does not convert between diverging and crashing programs, as ≈ (and so
demands) cannot distinguish these. Fortunately, demand analysis receives only well-typed
programs from type inference (§ 3.3), which cannot crash by type soundness (theorem 2.6,
pg. 38). A simple syntactic proof shows that annotating with seq preserves well-typing:

⊢ 𝑥 ∈ freevars ce ∧ Γ; Σ ⊢cns ce : 𝜏 ⇒ Γ; Σ ⊢cns seq (var x) ce : 𝜏

Therefore, demand analysis preserves well-typing too. This is sufficient to recover
semantics preservation, despite use of the weaker ≈-equivalence.

Further proof rules

To propagate more demands for idiomatic functional code, we define function demands
(demandsF) and application demands (demandsA):

𝑒 demandsF𝑛
𝑚

def
= ∀ em xj . en demands xj ⇒ (e · em) demands xj

𝑒 demandsA𝑚 xj
def
= ∀ em. (e · em) demands xj

The former indicates that the application of 𝑒 to 𝑚 arguments will demand the 𝑛th
argument, the latter that the application will demand xj. Using the derived rules below,
we can propagate demands from bodies of functions to their call-sites: 𝜆-abstractions
can produce function demands, and 𝜆-applications can produce application demands.

𝑒 demandsA𝑚 𝑥

(𝜆x. e) demandsF0
𝑚+1

demandsF
e1 demandsF0

𝑚+1 e2 demands xn

(e1 · e2) demandsA𝑚 xn
demandsA

e demands xn ⇐⇒ 𝑒 demandsA0 xn ⇔-demandsA

That is, if 𝑒 demands 𝑥 when applied to 𝑚 arguments, then 𝜆x. e demands its first
argument when applied to 𝑚+1 arguments (demandsF). Conversely, if e1 demands its first
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argument when applied to 𝑚 + 1 arguments, its 𝜆-application to argument e2 inherits
demands from e2 when applied to 𝑚 arguments (demandsA). Finally, we can convert
between regular demands and application demands (⇔-demandsA). For example, we can
recover the demand of 𝑦 by the simple expression (𝜆x. var x) · var y as follows:

(var x) demands x ⇒ (var x) demandsA0 𝑥 (⇔-demandsA)

⇒ (𝜆x. var x) demandsF0
1 (demandsF)

⇒ ((𝜆x. var x) · var y) demandsA0 𝑦 (demandsA)

⇒ ((𝜆x. var x) · var y) demands y (⇔-demandsA)

To handle such expressions, our analysis function gathers and propagates demands,
function demands, and application demands separately.

Recursive functions. We have derived propagation rules for recursive functions which
are closed, allowing demand analysis to annotate functions such as fact at the top of this
section. Considering the singleton binding letrec f = 𝜆 xn . ce in ce′ for simplicity, our
analysis begins by assuming that all of the arguments xn are demanded in body ce. We
then iterate over ce a fixed number of times, discounting false demands until we reach a
stable set of true demands 𝑥 𝑗 (or run out of iterations and give up). We can transform
the recursive binding to evaluate its true demands eagerly ( 𝑓 = 𝜆xn. seqs xj . . .), and
transform calls in ce′: each call 𝑓 · var yn becomes seqs var yj ( 𝑓 · var yn). Note that
this effectively requires A-normal form uses of 𝑓 : all function arguments must be
variables [Sabry and Felleisen 1992].

Future directions. Our current implementation is naïve, inserting seq annotations
wherever the propagation rules permit. However, the separation between implementation
of the analysis and the propagation rules which justify it mirrors the approach described
later in § 4.1.3 This allows us to reduce aggressiveness using heuristics without incurring
significant proof overhead. For now, we have disabled seq-insertion at call sites to work
around poor performance. In future work, we intend to analyse pattern matches and
constructors to propagate their demands, and optimise away inserted seqs.

3Strictly, the approach in § 4.1 involves syntactic relations, but demands are defined semantically. However,
the key resemblance lies in the separation between implementation and verification.
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Chapter 4

Compiler back end

In this chapter, I describe the PureCake compiler back end and its three intermediate
languages: ThunkLang, EnvLang, and StateLang.

As in other verified compilers, use of several intermediate languages permits tractable
verification by isolating significant code transformations. Each intermediate language of
the PureCake compiler is designed with such a code transformation in mind. At a high
level, compilation to the call-by-value ThunkLang introduces thunks, and optimisation
passes minimise their usage in key locations. In EnvLang, semantic definitions begin
using environments rather than substitutions. StateLang implements monadic operations
as stateful primitives and shares thunk values statefully. This last transformation neatly
introduces efficient lazy evaluation.

Figure 4.1 illustrates the structure of the PureCake compiler. We have already seen
the compiler front end, those parts above the dotted line (§ 3). After a review of our
general approach to compiler proofs (§ 4.1), I describe each intermediate language of
the back end and the verification of its passes in turn (those parts below the dotted line,
§§ 4.2 to 4.4 respectively).

4.1 Method: verify compiler relations, not functions

PureCake verifies its back end with a different methodology to that of CakeML. This
section first describes the approach, and then justifies it.

Approach

In CakeML, verification of back end compiler passes is tied to their implementation:
concrete compiler functions are directly proven semantics-preserving [Tan et al. 2019, §2.3].
Informally, any original expression 𝑒 that satisfies some preconditions has equivalent
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Language Compiler implementation

Concrete syntax

PureLang (§ 2)
ce (figure 2.2, pg. 20)

pure call-by-name
(subst. semantics)

ThunkLang (§ 4.2.1)
pure call-by-value
(subst. semantics)

EnvLang (§ 4.3)
pure call-by-value
(env. semantics)

StateLang (§ 4.4.1)
impure call-by-value

(env. semantics)

CakeML source

lex, parse, desugar (§ 3.1)

split letrecs; simplify (§ 3.2)
type inference (§ 3.3)
simplify (§ 3.2)
demand analysis (§ 3.4)

translate to call-by-value;
introduce delay/force; avoid
delay (force (var )) (§ 4.2.2)
lift 𝜆-abstractions
out of delays (§ 4.2.3)
simplify forces (§ 4.2.3)

reformulate to simplify
compilation to StateLang (§ 4.3)

compile delay/force and
IO monad to stateful ops (§ 4.4.2)

push · unit inwards (§ 4.4.3)
make every 𝜆-abstraction
bind a variable (§ 5.1)
translate to CakeML; attach
preamble (§§ 5.1.1 and 5.1.2)

front end (§ 3)

back end (§ 4)

Figure 4.1. High-level summary of the compiler’s intermediate languages and
compilation passes.
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semantics to the transformed expression, which satisfies some postconditions:

preconditions 𝑒 ⇒ ⟦ 𝑒 ⟧ = ⟦ transform 𝑒 ⟧ ∧ postconditions (transform 𝑒) (4.1)

In PureCake, we separate verification of back end compiler passes from their
implementations. We first define syntactic relations −ℛ− over semantic expressions,
which characterise the code transformations of each pass. We verify that each such
relation is semantics-preserving; in other words, any transformation mapping e to e′ and
satisfying 𝑒 ℛ 𝑒′ must give rise to equal observational semantics:

𝑒 ℛ 𝑒′ ∧ safe_itree ⟦ 𝑒 ⟧source ∧ closed e⇒ ⟦ 𝑒 ⟧source = ⟦ 𝑒′ ⟧target (4.2)

Intuitively, each such relation specifies an envelope of possible semantics-preserving
implementations. As is common, this correctness theorem assumes that the source
expression 𝑒 never fails (safe_itree, definition 2.5, pg. 38) and is closed, i.e., it is a whole
program. We prove these theorems in three stages: one simulation proof per layer of our
three-layered semantics (§ 2.3). The uppermost simulation proof produces the equality
between ITrees: ⟦−⟧source = ⟦−⟧target. The subscripts “source” and “target” are each one
of “pure”, “thunk”, “env”, or “state”: when compiling between intermediate languages
the two differ, for intra-language compilation they are the same.

The lowermost simulation concerns the functional big-step style evaluation, and
this is usually the most involved. In general, we prove either a forward or a backward
simulation. A forward simulation is shown below: if evaluation of expression 𝑒 in
the source language successfully produces a result 𝑟 within 𝑛 steps, then any related
expression 𝑒′ must produce a result 𝑟′ after evaluation for at least 𝑛 steps (𝑚 s.t. 𝑚 ≥ 𝑛)
in the target language. The results must continue to be related by some ℛres, which
effectively lifts ℛ to the relevant result type (weak-head normal forms in the case of
PureLang), ensuring that timeouts and runtime type errors match on both sides.

𝑒 ℛ 𝑒′ ∧ eval𝑛source 𝑒 = 𝑟 ≠ error⇒ ∃𝑚 ≥ 𝑛, 𝑟′. eval𝑚target 𝑒
′ = 𝑟′ ∧ 𝑟 ℛres 𝑟

′ (4.3)

Intuitively, for each step the source takes, the target can take one or more steps to
re-establish the relation between source and target. This “one or more” requirement is
necessary to prove divergence-preservation: when the source times out for all 𝑛, the
target must also time out for all 𝑚. No such step-counting is needed to prove preservation
of terminating behaviours. Backward simulation is similar, but with the “source” and
“target” subscripts reversed (though, the requirement for no type errors remains on the
source or is omitted). Therefore, each compiler pass must monotonically increase (for
forward simulation) or monotonically decrease (for backward simulation) the number
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of steps taken by the semantics, and ℛ must be such that stateful interpretation of
ℛres-related results produces equivalent ITrees.

It then suffices to define concrete compiler functions over compiler expressions
and prove that they inhabit the relevant relation envelopes. Again, these proofs can
assume syntactic well-formedness preconditions and must establish new well-formedness
postconditions for future passes:

wf? ce ⇒ (exp_of ce) ℛ
(
exp_of (compile ce)

)
∧ wf′? (compile ce) (4.4)

Straightforward composition of equations 4.2 and 4.4 provides the final correctness result
below, which fits the form of equation 4.1.

wf? ce ∧ safe_itree ⟦ exp_of ce ⟧source ∧ closed ce⇒
⟦ exp_of ce ⟧source = ⟦ exp_of (compile ce) ⟧target ∧
wf′? (compile ce) ∧ closed (compile ce)

(4.5)

When integrating the compiler function into the overall compilation pipeline, we must
discharge the precondition for each pass using the postcondition of the previous one. The
initial precondition is guaranteed by type inference (§ 3.3). Syntactic well-formedness
conditions (wf? and closed) are tedious but straightforward to prove, and safe_itree is a
corollary of semantics-preservation from type-safe code.

Advantages

Though it seems long-winded, this two-phase approach has several benefits.

• Relations can impose syntactic restrictions on input code by narrowing their
domains. By contrast, restricting total functions requires carrying invariants
between proofs. Now, each relation can be verified orthogonally, and adding a new
pass to the compiler is minimally impacted by the design choices of existing ones.

• Relations can remain high-level, avoiding concrete details such as calculating
free/bound variables, strategies for inventing fresh names, etc. Where such a detail
is required, it can simply be assumed to exist.

• Relations can be prototyped rapidly, due to the points above and their usage of
simpler semantic expressions. This provides early feedback on the key correctness
concerns of a code transformation before implementation details are considered.

• Complicated passes can be implemented as a single function but verified by
composing several simpler relations, reducing proof complexity without sacrificing
performance.
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• Compiler functions can be modified without redoing their core verification. Syn-
tactic relations capture possible compiler implementations: we are free to change
implementation details and internal heuristics as long as we remain within the en-
velope of the syntactic relation(s). Then, we need only re-derive equation 4.4—not
equation 4.2. The former syntactic proof is simpler than the latter semantic one.

In summary, this technique separates concerns: relation verification focuses on code trans-
formations, and function verification focuses on implementation details and bookkeeping
between compiler passes.

The remainder of this chapter describes each intermediate language in turn—their
syntax, semantics, and optimisations. Here, the methodology of syntactic relations
has an additional benefit: optimisations are most clearly presented by showing the
syntactic relations used to verify them. I focus on these core code transformations
instead of the mostly standard details concerning relation verification, compiler function
implementation/verification, and integration into the compilation pipeline. I omit trivial
rules defined by simple recursion over expression syntax, e.g. for 𝜆-application, rules of
the form: e1 ℛ e′1 ∧ e2 ℛ e′2 ⇒ (e1 · e2) ℛ

(
e′1 · e

′
2
)
. These simply permit the application

of any non-trivial rules deep within expressions.

4.2 ThunkLang

ThunkLang is the first intermediate language of the PureCake compiler. It resembles
PureLang closely, but is call-by-value and introduces new primitives for handling thunks,
i.e., delayed computations (§ 4.2.1). These primitives are necessary to model PureLang’s
call-by-name evaluation after compilation into ThunkLang (§ 4.2.2). After the initial
compilation from PureLang, we perform two intra-language optimisation passes within
ThunkLang (§ 4.2.3).

4.2.1 Syntax and semantics

Like PureLang, ThunkLang has two ASTs (ce for compilation, and e for semantics, where
exp_of expands the former to the latter). It semantics is also specified in three lay-
ers (§ 2.3.3), but is call-by-value: weak-head forms wh become traditional values 𝑣,
and evaljwh e/evalwh e become evalj e/eval e respectively. Values v and expressions e are
mutually recursive data types: lambda x e is a function value, and value v wraps a value
into an expression, so that the semantics of ThunkLang can specify substitution of values
into expressions. I omit the first layer of ThunkLang semantics (clocked evaluation, evalj e),
instead showing characterising equations for the second layer (unclocked evaluation,
eval e). Below are two derived equations which exemplify the change to call-by-value:
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constructors are evaluated deeply, i.e., their arguments are also inspected and evaluated;
function application evaluates its argument before substituting in the resulting value.
Here, mapM maps its function argument over its list argument, returning error if the
resulting list contains an error or diverge if the resulting list contains diverge (in that
order), and otherwise returning the resulting list.

⊢ eval (cons cname[ em ]) = do
𝑣𝑚 ← mapM eval em

cons𝑣 cname[ vm ]

⊢ eval (e1 · e2) = do
v← eval e2;
lambda x e← eval e1;
eval (𝑒[value v/𝑥])

Monadic operations are still evaluated shallowly to align with PureLang, and evaluating
a top-level program still produces a monadic value. However, in ThunkLang stateful
interpretation becomes call-by-value too: during interpretation, arguments to monadic
operations are eagerly evaluated before considering sequencing and effects, and arrays
store values rather than expressions.

ThunkLang also introduces thunk-handling primitives delay and force. In particular,
delay delays computation of an expression by embedding it into a thunk; its counterpart
force forces the evaluation of a previously-delayed expression.

⊢ eval (delay e) = thunk e
⊢ eval (force e) = do

thunk e′← eval e; eval e′

ThunkLang’s evaluation is pure and stateless: each time a thunk is forced, the expression
within is re-evaluated. Therefore, these thunks are not the lazy thunks of Haskell. We
implement Haskell-flavoured sharing of thunk evaluations later, in StateLang (§ 4.4).

There are two more minor changes in ThunkLang: case-statements in compiler expres-
sions pattern match on a variable, rather than a compiler expression; and let-statements
are lifted to top-level semantic expressions (in contrast to PureLang’s view of let as
syntactic sugar). We can summarise the key syntax changes as follows:

e ::=
| . . .
| value v
| delay e
| force e
| let x = e1 in e2

v ::=
| thunk e
| cons𝑣 cname[ vn ]
| monadicwh mop[ en ]
| lambda x e
| lit lit
| error
| diverge

ce ::=
| . . .
| delay e
| force e
| case x of rown
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e1
thunk−−→ e′1 e2

thunk−−→ e′2
e1 · e2

thunk−−→ e′1 · delay e′2
ThunkApp

var x thunk−−→ force (var x)
ThunkVar

e1
thunk−−→ e′1 e2

thunk−−→ e′2
(𝜆x. e2) · e1

thunk−−→ let x = delay e′1 in e′2
ThunkLet

∀𝑛. en
thunk−−→ e′n e thunk−−→ e′

letrec xn = en in e thunk−−→ letrec xn = delay e′n in e′
ThunkLetrec

∀𝑛. en
thunk−−→ e′n

cons cname[ en ] thunk−−→ cons cname[delay e′n ]
ThunkCons

e thunk−−→ e′

projn cname e thunk−−→ force
(
projn cname e′

) ThunkProj

e1
thunk−−→ e′1 e2

thunk−−→ e′2 fresh ∉ freevars e2

seq e1 e2
thunk−−→ let fresh = e′1 in e′2

ThunkSeq

Figure 4.2. Core rules from − thunk−−→ −, the first syntactic relation between PureLang and
ThunkLang.

4.2.2 Compilation from PureLang

To model the weak-head, call-by-name PureLang in the call-by-value ThunkLang, we
delay computations to prevent their evaluation until dictated by the PureLang semantics.
We must then force each such delayed computation before we use it.

The syntactic relation − thunk−−→ − characterises this direct embedding. Its core rules are
shown in figure 4.2. ThunkApp models call-by-name evaluation by delaying arguments
at application sites (and ThunkLet is a special case of this rule which produces a
let-statement). ThunkLetrec delays letrec-bound variables to bring them in line with
𝜆-/let-bound variables; all variables are now delayed at their binding sites, so ThunkVar
forces all usages of variables. ThunkCons models weak-head constructor forms: delaying
all arguments to constructors ensures they evaluate immediately to a thunk without
inspecting the expression within. ThunkProj ensures that any such delayed argument is
forced once projected. ThunkSeq compiles seq to a let-statement which binds a fresh
variable, relying on call-by-value evaluation order. Note how this relation simply asserts
the existence of a sufficiently fresh name fresh.

Rules for monadic operations are shown in figure 4.3, and fall out naturally from two
invariants: all arguments to return or raise are delayed to avoid premature evaluation
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e thunk−−→ e′

raise e thunk−−→ raise (delay e′)
ThunkRaise

e thunk−−→ e′

len e thunk−−→ bind (len e′) (𝜆x. return (delay (var x)))
ThunkLen

e1
thunk−−→ e′1 e2

thunk−−→ e′2
alloc e1 e2

thunk−−→ bind
(
alloc e′1

(
delay e′2

) )
(𝜆x. return (delay (var x)))

ThunkAlloc

e1
thunk−−→ e′1 e2

thunk−−→ e′2
deref e1 e2

thunk−−→ handle
(
deref e′1 e′2

)
(𝜆x. raise (delay (var x)))

ThunkDeref

e1
thunk−−→ e′1 e2

thunk−−→ e′2 e3
thunk−−→ e′3

update e1 e2 e3
thunk−−→ bind

(
handle

(
update e′1 e′2

(
delay e′3

) )
(𝜆x. raise (delay (var x)))

)
(𝜆x. return (delay (var x)))

ThunkUpdate

Figure 4.3. Monadic rules from − thunk−−→ −, the first syntactic relation between PureLang
and ThunkLang.

during stateful interpretation; and the value-based arrays of ThunkLang must store
thunks to model the expression-based arrays of PureLang. ThunkRaise delays arguments
to raise (return is similar). ThunkLen delays the result of a length query; this result
is implicitly a monadic return of an integer (as in figure 2.6 on pg. 29, similarly action
implicitly returns a string FFI response). ThunkAlloc also wraps an implicit monadic
return, and further delays the expression that will be stored in the freshly-allocated array.
Dereferencing can throw a subscript error on an out-of-bounds array access; ThunkDeref
ensures this implicit raise is delayed. Note that though deref implicitly returns a value
from an array, there is no need to delay it because arrays store only thunks (i.e., it is
already delayed due to the second invariant above). Last, ThunkUpdate delays both a
successful result and any thrown exception, and further ensures arrays are updated only
with delayed values.

We straightforwardly verify that thunk−−→ expresses semantics-preserving transformations.
Unfortunately, any implementation within its envelope produces poor quality code.
In particular, occurrences of the inefficient pattern delay (force . . .) arise whenever a
variable or projection is passed as a function argument or let-bound. Worse still, the
desugaring of case-expressions produces many such let-bound projections (definition 2.3,
pg. 30). We must remove this pattern wherever possible, focusing particularly on case-
expressions to permit their straightforward compilation into ThunkLang. Four syntactic
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∀𝑛. en
liftLet−−→ e′n ∀𝑛. x ∉ freevars en

if (eq? cname n e1) then e2 else e3
liftLet−−→ let x = e′1 in

(
if

(
eq? cname n e′1

)
then e′2 else e′3

)
𝒞 letForce−−−→ 𝒞′ 𝑥 ≠ 𝑦 𝑥, 𝑦 not shadowed in 𝒞[−]

let x = force (var y) in 𝒞[force (var y)] letForce−−−→ let x = force (var y) in 𝒞′[var x]

𝑒 caseProj−−−−→ 𝑒′

let x = delay
(
force

(
projn cname (var y)

) )
in e

caseProj−−−−→ let x = projn cname (var y) in e′

delay (force (var x)) unthunk−−−→ var x

Figure 4.4. Core rules for let-lifting, let-forcing, case-projection, and unthunking. All
other rules are defined by simple recursion.

relations justify this removal: let-lifting, let-forcing, case-projection, and unthunking.
The rules in figure 4.4 showcase their critical transformations; otherwise they are

defined by simple recursion over semantics expressions. Using let-lifting (− liftLet−−→ −), we
bind expression e1 to 𝑥 when e1 is immediately tested using if/eq?. Testing with if/eq?

immediately evaluates e1 and 𝑥 is sufficiently fresh, so the eager let-binding cannot change
semantics. We expect e1 to be of the form force (var y), produced by the action of thunk−−→
on the output of expand, which helps to desugar case-expressions (definition 2.3, pg. 30).
Now, let-forcing (− letForce−−−→ −) uses the newly-introduced binding (x = force (var y)) to
reduce unnecessary forcing in subexpressions, by converting force (var y) to var x as long
as 𝑥 and 𝑦 have not been shadowed by some intervening binding. I have abused notation
here, using contexts 𝒞[−] to illustrate a subexpression which contains an instance of
force (var y); the premise 𝒞 letForce−−−→ 𝒞′ simply indicates that the rest of the subexpression
may be transformed by letForce−−−→ too. The final two relations directly remove delay (force . . .)
patterns in certain locations: case-projection (− caseProj−−−−→ −) around projections, where
it arises due to the combination of ThunkLet and ThunkProj (figure 4.2, pg. 57); and
unthunking (− unthunk−−−→ −) around variables.

Implementation

There is only one overall PureLang-to-ThunkLang compiler pass (pure_to_thunk), whose
action lies in the envelope produced by composing the five syntactic relations we have
seen ( thunk−−→, liftLet−−→, letForce−−−→, caseProj−−−−→, and unthunk−−−→). Breaking down a single compiler pass into
smaller verification steps keeps proofs tractable without sacrificing performance.
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The actual implementation of the pass is relatively straightforward, guided entirely
by the syntactic relations. Only case-expressions require further attention: PureLang
versions are compiled to their counterparts in ThunkLang with the insertion of two
additional let-bindings. The first represents the binding x = ce in case x = ce of rown,
which is not present in ThunkLang’s syntax for case. The second is the let-binding
introduced by the combination of let-lifting and let-forcing. We can see that unthunking
is implemented using a simple mechanism: instead of producing delay operations
directly, the compiler uses a smart constructor, mk_delay.

pure_to_thunk (case x = ce of cname[ xn ] → ce1 | rowm)
def
=

let x = mk_delay (pure_to_thunk ce) in

let fresh = force (var x) in

case fresh of cname[ xn ] → pure_to_thunk ce1 | row′m

mk_delay ce def
=


var x if ce = force (var x) ,
delay ce otherwise.

Verification details

In this section, I describe work completed by Oskar Abrahamsson.

For each relation above, we must derive either a forward or backward simulation result
akin to equation 4.3 (pg. 53), proved by induction using the principle generated when
defining functional big-step evaluation. In either direction, the existentially-quantified
step count𝑚 makes the proof awkward and tedious: each inductive hypothesis introduces
a fresh step count 𝑚𝑖 , and we must consolidate these by appealing to determinacy and
monotonicity of our clocked semantics. This causes significant repetition amongst the
verification of each syntactic relation.

If both source and target use the same number of steps, we can remove the existential
quantification on the step count:

𝑒 ℛ 𝑒′ ∧ eval𝑛source 𝑒 = 𝑟 ≠ error⇒ ∃ 𝑟′. eval𝑛target 𝑒
′ = 𝑟′ ∧ 𝑟 ℛres 𝑟

′

Therefore, we modify each syntactic relation to preserve step counts by inserting dummy
“ticks” which incur a single step on evaluation, but do not modify semantics. In particular,
a tick wraps an expression 𝑒 with an empty recursive binding, letrec _ in e. This form
should not appear in compiled code, so we verify another syntactic relation untick−−→ to justify
removal of ticks. Now, we incur the awkwardness of existentially quantified step counts
exactly once, and simplify all other proofs. Each compiler function which was previously
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verified with respect to some relation ℛ is now verified with respect to ℛ post-composed
with untick−−→. Note that CakeML also uses dummy ticks to simplify verification; however, its
implementation actually inserts them into code before removing them again in a later
pass [Owens et al. 2017]. In PureCake, dummy ticks appear in proofs only.

There is one further subtlety. Recall that the unthunk−−−→ relation transforms expression of
the form delay (force (var x)) into var x. The former evaluates to a thunk immediately,
but when later forced, incurs an additional step compared to forcing the right-hand side.
To preserve step counts, we introduce “delayed ticks”: ticks which incur their additional
steps only when forced. In particular, we extend ThunkLang semantics expressions with
tick 𝑒, which has a semantics that evaluates 𝑒 to some 𝑣 and produces a value ticked 𝑣.
When forced, ticked 𝑣 consumes a step before forcing 𝑣.

4.2.3 Intra-language optimisations

We perform two further ThunkLang-to-ThunkLang optimisations.
The first lifts delayed 𝜆-abstractions which are bound by a let-/letrec-statement

into their own variable bindings. Further lookups of the delayed 𝜆-abstraction which
occur under a force operation can be replaced with a direct lookup of the non-delayed
𝜆-abstraction itself, reducing the overhead of calling known let-bound functions. The
rule below illustrates the syntactic relation in the let case:

𝑒 liftLam−−−→ 𝑒′ 𝒞 liftLam−−−→ 𝒞′ fresh is fresh 𝑥 not shadowed in 𝒞[−]

let x = delay (𝜆y. e) in 𝒞[force (var x)]
liftLam−−−→ let fresh = (𝜆y. e′) in let x = delay (var fresh) in 𝒞′[var fresh]

The second pass is another instance of let-forcing, seen as a limited form of common
subexpression elimination. We have already eliminated the common subexpression
force (var y) around case-statements; now we apply the same letForce−−−→ rule wherever we see
expressions of the form let x = force (var y) in e. This is a limited form of value-sharing:
once var y has been forced by the eager let-binding, its result can be reused in the
continuation expression e.

4.3 EnvLang

EnvLang is the intermediate language which follows ThunkLang, and is only a minor
stepping stone towards its own successor, StateLang (§ 4.4). Its syntax closely mirrors
ThunkLang, except its compiler expressions also specify top-level constructors for each
monadic operation (bind, raise, action, etc.). However, its semantics is expressed using
environments rather than substitutions: evaluation of an expression is parametrised



4. compiler back end 62

by an environment 𝜂 which provides the values of its free variables, and semantic
expressions omit the value form. The following equations characterise the differences:
variable evaluation requires a lookup in the environment; delays and 𝜆-abstractions
capture their environments to produce environment-equipped thunks and closures;
force evaluates a thunk using its captured environment; and function application extends
a closure environment with a new binding for the passed argument.

⊢ eval𝜂 (var x) =
if 𝑥 ∈ domain(𝜂)
then 𝜂(𝑥) else error

⊢ eval𝜂 (force e) = do
thunk𝜂′ e′← eval𝜂 e;
eval𝜂′ e′

⊢ eval𝜂 (delay e) = thunk𝜂 e

⊢ eval𝜂 (𝜆x. e) = closure𝜂 x e

⊢ eval𝜂 (e1 · e2) = do
v← eval𝜂 e2;
closure𝜂′ x e← eval𝜂 e1;
eval𝜂′[x↦→v] e

Compilation from ThunkLang to EnvLang is almost an identity mapping, except
monadic operations are lifted to their top-level constructors. The core verification for
this pass concerns the transition from substitutions to environments. Our syntactic
relation, 𝑒 env−→ 𝑒′ ⊣ 𝜂, is parametrised by an environment which provides values for the
free variables in e′. The characterising rules follow (all others are simple recursion):

𝜂(𝑥) = 𝑣′ 𝑣 env−→ 𝑣′

value v env−→ var x ⊣ 𝜂

𝑥 ∉ domain(𝜂)

var x env−→ var x ⊣ 𝜂

𝑒 env−→ 𝑒′ ⊣ 𝜂 − {𝑥}

𝜆x. e env−→ 𝜆x. e′ ⊣ 𝜂

𝑒 env−→ 𝑒′ ⊣ 𝜂

thunk e env−→ thunk𝜂 e′

A value v corresponds to any variable 𝑥 for which we can find 𝑣′ in the environment such
that 𝑣 and 𝑣′ are suitably related, where I abuse notation to lift env−→ to values (note the
absence of an environment here, as values are expected to have no free variables); equal
variables are related as long as the environment does not mention them; 𝜆-abstractions
are related if their bodies are related in the environment which does not know anything
about the value passed in as their bound variable; and thunk values are related if their
subexpressions are related in the environment captured by the EnvLang thunk. The
lowermost simulation proof for this relation is phrased as follows:

⊢
(
𝑒 env−→ 𝑒′ ⊣ 𝜂

)
⇒

(
eval e env−→ eval𝜂 e′

)
In other words, relatedness with respect to a particular environment is preserved by
evaluation in that environment.
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4.4 StateLang

EnvLang is compiled into StateLang, the final intermediate language of the PureCake
compiler. StateLang differs somewhat from its predecessors: designed to match CakeML
closely, its syntax introduces stateful and I/O primitives while its semantics is expressed
as a CESK machine (§ 4.4.1). Compilation implements both monadic operations and the
thunk operations delay/force in terms of more primitive constructs (§ 4.4.2); thunk values
are shared statefully to introduce lazy evaluation. A final intra-language optimisation
pass removes compilation artefacts (§ 4.4.3).

4.4.1 Syntax and semantics

As in all predecessor languages, exp_of : ce → e maps compiler expressions to se-
mantic expressions in StateLang. However, its syntax removes monadic operations and
introduces effectful primitives, and we specify its semantics using a CESK machine.

More concretely, StateLang removes monadic operations return and bind, and
expresses others as primitive operations, denoted with the subscript “prim” to avoid
ambiguity. Without monadic operations, there is no need for a third semantics layer of
stateful interpretation (§ 2.3), so we specify StateLang semantics in a single layer as a
CESK machine [Felleisen and Friedman 1987] which produces the expected ITree directly.
We choose to use a CESK machine for two reasons: it naturally handles mutable store
and the stack-like monadic control flow we wish to model; and CakeML expresses a
version of its semantics as a CESK machine, which we augment to provide a suitable
target semantics (§ 5). The values of StateLang no longer require the error/diverge forms
used to specify the functional big-step semantics of previous languages. Overall, the key
syntax changes are as follows:

op ::= cons cname | prim primop | raiseprim | handleprim | actionprim |
allocprim | lenprim | derefprim | updateprim

v ::= thunk𝜂 e | cons𝑣 cname[ vn ] | closure𝜂 x e | lit lit

Our CESK (Control Environment State Kontinuation) machine state is a four-tuple,
consisting of the “current” expression or value being processed, an environment provid-
ing values for variables in scope, a mutable store, and a continuation stack. Evaluating
an expression pushes frames onto the continuation stack in a right-to-left, call-by-value
evaluation order until a value can be produced. This value is “returned”, popping frames
off the continuation stack appropriately. Effectful primitives query and update the
mutable store. I omit full details as they are essentially standard, except for production
of an ITree which is described further in § 5.2.1.
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There is one subtlety, due to inheritance of thunk operations delay/force from
EnvLang. Though we compile these operations away in StateLang, they persist in
semantic expressions for ease-of-verification (§ 4.4.2). However, force is a pure operation
in EnvLang, and must remain pure in StateLang if we want to share thunk values statefully.
In particular, repeated forcings of the same thunk must produce the same value: it is
unsound to share a previously computed value statefully if a different value can be
obtained by another forcing. StateLang semantics therefore forbids all stateful operations
while forcing a thunk value (i.e., using force to compute the delayed expression contained
within). To achieve this, we make the CESK machine’s mutable store optional: when
entering a force, we remove the mutable store and save it to the continuation stack; when
exiting a force we revert the mutable store by restoring it from the continuation stack.
While the store is removed, any stateful operations cause runtime type errors. We prove
that StateLang code compiled from the pure fragment of EnvLang does not inspect or
modify the store, and so cannot introduce any of these runtime type errors.

4.4.2 Compilation into StateLang

StateLang must model the sequencing of IO operations: the notion that monadic code
expresses a computation as data, which only becomes effectful when it is “run”. There-
fore, we compile monadic operations to suspended computations which perform their
operations only when triggered. Effectful (i.e., exception-handling, arrays, I/O) monadic
operations will use effectful primitives once triggered. The implementation of monadic
operations as imperative code is sometimes referred to as monadic reflection [Filinski 1994,
2010]. We also leverage StateLang’s primitives to compile thunk operations delay/force
to stateful operations which share values, so that forcing a previously-computed thunk
does not recompute it. This critical transformation introduces lazy evaluation quite late
in compilation at minimal verification cost.

Monadic operations. The syntactic relation − reflect−−→ − defined in figure 4.5 encapsulates
the compilation of monadic operations. Each monadic operation produces an expression
of the form 𝜆_. e (a 𝜆-abstraction which does not bind an argument), representing a
suspended computation which can be triggered by application to unit. As a top-level
PureLang program is monadic, the overall action of reflect−−→ produces such a suspended
computation which we must wrap in an application to a unit (− · unit). This will trigger
the evaluation of the program’s monadic effects in the correct order.

Monadic returns are simply suspended. We rely on StateLang’s right-to-left evaluation
order for bind: e′1 is triggered first, then passed to the continuation which is itself
triggered. Though message primitives are not monadic, they hold FFI communication
inputs (channel and message content) for use with action; we compile them to suspended
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𝑒 reflect−−→ 𝑒′

return e reflect−−→ 𝜆_. e′
e1

reflect−−→ e′1 e2
reflect−−→ e′2

bind e1 e2
reflect−−→ 𝜆_. e′2 ·

(
e′1 · unit

)
· unit

e reflect−−→ e′

prim (message ch) e reflect−−→ let x = e′ in 𝜆_. actionprim ch (var x)

e reflect−−→ e′

action e reflect−−→ 𝜆_. (e′ · unit)

e1
reflect−−→ e′1 e2

reflect−−→ e′2
handle e1 e2

reflect−−→ 𝜆_.
(
handleprim

(
let x = e′1 · unit in 𝜆_. var x

)
e′2
)
· unit

∀𝑛. en
reflect−−→ e′n mop ∉ {return, bind, handle, action}

mop[en] reflect−−→ 𝜆_. mopprim[e′n]

Figure 4.5. Key rules from − reflect−−→ −, concerning compilation of monadic operations.

e dethunk−−−→ e′

delay e dethunk−−−→ allocprim [false, 𝜆_. e′]

e dethunk−−−→ e′

force e dethunk−−−→ let x = e′ ; x0 = x[0] ; x1 = x[1] in

if var x0 then var x1 else

let w = var x1 · unit in

x[0] := true ; x[1] := var w ; var w

Figure 4.6. Key rules from − dethunk−−−→ −, concerning compilation of delay and force. We
use the following shorthands: x[z] := e is short for allocprim (var x) (int z) e, x[z] is short
for derefprim (var x) (int z), and e1; e2 is short for let _ = e1 in e2 (a let-binding that does

not bind a name).
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FFI communication primitives, which are triggered by the compiled version of action
itself. We might expect handle to mirror bind, but there is a key difference: a handle
continuation is optional, executed only when an exception is raised by triggering e′1. If no
exception is produced, we must re-wrap the already-triggered e′1 · unit in a suspended
computation so that the surrounding context can trigger it as expected. All other monadic
operations (raise and the array operations) are straightforwardly compiled to suspended
primitive operations.

Thunk operations. The syntactic relation − dethunk−−−→ − defined in figure 4.6 encapsulates
the compilation of thunk operations delay and force into stateful primitives. Thunks are
now represented by thunk-arrays, arrays of length two: the first element is a flag indicating
whether the thunk has previously been forced, and the second is either a suspended
computation (if the flag is false) or the final value (if the flag is true). Therefore, delay
is represented as a primitive array allocation (allocprim) of a thunk-array with the flag
set to false. Compilation of force e expects e to produce a thunk-array. It reads the
thunk-array’s flag (x[0]) and branches: if true, the contained value (x[1]) has been
computed previously and so is simply returned; otherwise, the suspended computation
is forced by application to unit to produce a final value 𝑤, the thunk-array is updated
with a true flag, and the final value is returned. The thunk-array index and update
operations are implemented with unchecked array accesses for a small performance boost:
the index is not bounds-checked before accessing the thunk-array.

Implementation and verification details

The compiler implements both transformations simultaneously, and use of two syntactic
relations keeps proofs tractable. However, use of two relations requires StateLang’s
semantic expressions and semantics to support the thunk values (and delay/force)
operations of EnvLang, where otherwise they could be removed.

Unusually, we perform the lowest-level simulation proof for dethunk−−−→ in two directions,
i.e., both a forward and a backward simulation. This is due to a mismatch in step-
counting: compilation of thunks to stateful operations neither monotonically increases
nor monotonically decreases the number of steps taken by the semantics (§ 4.1). Compiled
delay operations require more steps to set up the thunk-array; and compiled force
operations can effectively skip a finite number of steps incurred in EnvLang by simply
“remembering” a previously-forced result rather than recalculating it.

The key invariant in these simulation proofs is ℛ𝜎, a relation between mutable stores.
Before dethunk−−−→, stores contain only regular arrays; afterwards, each location in the store
maps either to a regular array or to a thunk-array allocated by a compiled delay. Therefore,
ℛ𝜎 is parametrised by a mapping 𝜌, which takes each location 𝑙′ in the thunk-array store
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𝜎′ to either a location 𝑙 in the original store 𝜎 (if 𝑙′ contains a regular array) or to the thunk
value represented by the thunk-array at 𝑙′.

The formal definition below captures this intuition, relying on auxiliary relations
ℛv, ℛ𝜂, and ℛthunk. The first two lift dethunk−−−→ to values and environments, and are also
parametrised by 𝜌 to handle store locations which are embedded in values. The latter
relates pure thunk values to shared thunk-arrays, and is defined by the two rules below:
a thunk-array is either unforced, containing a closure that suspends a computation which
is suitably related to the pure thunk; or previously-forced, containing a value that is
related to the result of forcing (⇓) the pure thunk.

𝜌 ⊢ 𝜎 ℛ𝜎 𝜎′
def
= ∀ l′ ∈ domain 𝜎′.


𝜌 ⊢ (loc l) ℛv (loc l′) 𝜌 l′ = loc l

𝜌 ⊢ (thunk𝜂 e) ℛthunk
(
𝜎′(𝑙′)

)
𝜌 l′ = thunk𝜂 e

𝜌 ⊢ 𝜂 ℛ𝜂 𝜂′ e dethunk−−−→ e′

𝜌 ⊢ (thunk𝜂 e) ℛthunk [false, closure 𝜂′ _ e′]

e ⇓𝜂 v 𝜌 ⊢ v ℛv v′

𝜌 ⊢ (thunk𝜂 e) ℛthunk [true, v′]

4.4.3 Intra-language optimisation

We perform one further StateLang-to-StateLang optimisation, which handles the soup of
𝜆-abstractions that ignore their argument (𝜆_. −) and applications to a unit (− · unit)
produced by reflect−−→. We push applications to unit in through let-/letrec-/if-statements and
𝛽-contract (𝜆_. e) · unit to e. The relation appUnit−−−→ below characterises this transformation;
once again I elide details concerning dummy ticks inserted for ease-of-verification (§ 4.2.2).

𝑒 appUnit−−−→ 𝑒′

(𝜆_. e) · unit appUnit−−−→ e′

e1
appUnit−−−→ e′1 e1

appUnit−−−→ e′2
(let x = e1 in e2) · unit appUnit−−−→ let x = e′1 in

(
e′2 · unit

)
∀𝑛. en

appUnit−−−→ e′n e appUnit−−−→ e′

(letrec xn = en in e) · unit appUnit−−−→ letrec xn = e′n in (e′ · unit)

e appUnit−−−→ e′ e1
appUnit−−−→ e′1 e1

appUnit−−−→ e′2
(if e then e1 else e2) · unit appUnit−−−→ if e then (e1 · unit) else (e2 · unit)
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Chapter 5

Connecting with CakeML

Targeting CakeML leverages its mature optimising compiler and end-to-end correctness
guarantees. However, there are significant challenges in reconciling the PureCake and
CakeML worlds to obtain a final end-to-end correctness theorem which spans from
PureCake to machine code. In this chapter, I highlight these challenges and detail their
solutions, before presenting PureCake’s top-level correctness results.

First, I describe compilation of StateLang to CakeML (§ 5.1), focusing particularly
on implementation of primitives. Next, I reconcile the trace-producing, oracle-based
semantics of CakeML with the ITree-producing semantics of the PureCake project (§ 5.2).
Last, I present PureCake’s compiler correctness and end-to-end correctness theorems,
and produce a verified PureCake binary (§ 5.3).

5.1 Compiling StateLang to CakeML

StateLang was designed with its compilation to CakeML in mind, so there are no
irreconcilable differences between the two languages. However, the semantics of
CakeML necessitates careful compilation of data types (§ 5.1.1), and we must implement
built-in operations in CakeML (§ 5.1.2). Most notably, we must use CakeML’s FFI (which
uses byte arrays) to express the string-based FFI of PureLang.

Preliminaries: variable names

CakeML does not support 𝜆-abstractions and let-bindings that do not bind arguments,
so a StateLang-to-StateLang pass gives a fresh bound variable name to each of these. The
simple relation name−−→ demonstrates this change:

𝑒 name−−→ 𝑒′ fresh ∉ freevars e

𝜆_. e name−−→ 𝜆fresh. e′
∀𝑛. 𝑒𝑛 name−−→ 𝑒′𝑛 fresh ∉ freevars e1 ∪ freevars e2

let _ = e1 in e2
name−−→ let fresh = e′1 in e′2
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5.1.1 Data types

CakeML’s semantics is parametrised by an environment of data types and exceptions,
recording the types and arities of all constructors currently in scope: when an ill-typed
constructor or pattern match is encountered, the semantics produces a runtime type
error. This enables optimisations in CakeML that modify its rich pattern matches:
verification can assume a lack of runtime type errors and also learn that constructors and
pattern matches are well-typed. Therefore, compilation to CakeML must ensure that any
constructors and pattern matches it introduces are considered well-typed by CakeML’s
semantics. We achieve this straightforwardly: we emit CakeML data type declarations
to introduce the types and constructors extracted from PureLang by parsing (§ 3.1); and
we use simple syntactic invariants to verify that compilation preserves the type-checked
constructor applications and pattern matches of PureLang. The latter form one of the
syntactic well-formedness conditions in equation 4.4 (pg. 54). When emitting CakeML
declarations we need only consider constructors and arities, and not attempt to translate
PureLang types to CakeML types or to handle mutually recursive declarations. Therefore,
we introduce dummy type declarations consisting of constructors applied to unit types
only, neglecting even to assign unnecessary type names. For example, a standard
binary tree data type in PureLang (left-hand side) becomes a CakeML type declaration
(right-hand side, using OCaml-like syntax for accessibility):
data Tree a =

Leaf | Node (Tree a) a (Tree a)

type _ =

Leaf | Node of unit * unit * unit

These are introduced in a compilation preamble, prepended to the compiled program itself.
One subtlety is that the list data type and subscript exception are considered built-in
in CakeML. For simplicity, we consider them built-in in PureLang too: any attempt to
redefine them will result in a compilation error.

5.1.2 Built-in operations

We must implement in CakeML both the effectful primitives introduced in StateLang (§ 4.4)
and the primitive operations inherited from PureLang. The former were designed to
permit direct translation to CakeML, though some wrapping with bounds checks is
necessary to match semantics. Primitive division and modulo operators inherited
from PureLang must also be wrapped to handle division/modulo by zero. Translation
of primitive PureLang string operations is slightly more involved as CakeML offers
fewer string primitives (e.g., strings can be compared for equality but not lexicographic
ordering), and incurs further bounds-checks. In particular, we implement lexicographic
string comparison as a recursive function in CakeML, and bind it as a declaration once
and for all in the compilation preamble.
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The most significant challenge here is compilation of FFI calls. In CakeML, an FFI
call ffi ch 𝑠 𝑙 contains three pieces of information: a channel ch (i.e., the name of the
underlying C function), a string argument 𝑠, and a reference to a byte-array 𝑙. The FFI
function reads the contents of the byte-array, so it effectively receives two arguments:
the string and the contents of the fixed-length byte-array. The FFI function writes its
response into the same byte-array, so making it available to the CakeML program.

However, PureLang has no byte-arrays, so its FFI calls accept messages containing two
strings (FFI channel and argument): action (msg ch s). The response is a single string.
When realising a PureLang FFI call in CakeML, we can directly pass in the channel ch
and string 𝑠 with some arbitrary byte-array. However, we must read the FFI response
back from that same byte-array and convert it to a string so that the rest of the compiled
PureLang program can use it. There is a mismatch here: PureLang semantics could
naturally permit string FFI responses of any length, but the CakeML semantics enforces
responses lengths that fill the fixed-length byte-array. When compiling to CakeML,
we do not know how long a given PureLang FFI response will be. We impose three
restrictions on FFI functions used with the PureCake compiler to solve this issue: their
responses must be shorter than some fixed bound (4096 bytes); they do not read from
their input byte-array; and they write the length of their response in the first two bytes of
the input byte-array (followed by the response itself). Restricting FFI calls in this way
does not modify our trusted computing base: just like CakeML, PureCake must trust its
FFI implementation in C.

We have seen that PureLang semantics considers overlong FFI responses equivalent to
an FFI error (figure 2.6, pg. 29). We can see now that this restriction is necessary to relate
PureCake and CakeML FFI calls directly, and that the maximum FFI response length is
responseBound = 4096. Some byte-array of length 4098 is passed to each FFI call, safe
in the knowledge its contents will not be read; the response length can be encoded in
the first two bytes leaving the remainder available for a maximum-length response. For
simplicity and to reduce allocation overhead, we allocate a single byte-array (called
ffi_array) in the compilation preamble, reusing this for each FFI call. A StateLang FFI
call actionprim ch msg is therefore compiled to the following CakeML (expressed as
OCaml-like pseudocode for accessibility):

let s = msg in

FFI ch s ffi_array;

let len = 256 * int(ffi_array[1]) + int(ffi_array[0]) in

let len = min(4096, len) in

string(ffi_array[2:len])

The message is bound to a variable before invoking CakeML’s FFI primitive with the
correct channel, message, and byte-array. The external FFI function (whose name is
given by the channel) executes and writes its response back to ffi_array. Reading the
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(* BEGIN preamble *)

(* Type and exception declarations *)
type _ = ...
...
exception _ of ...
...

(* String operations *)
let rec strleq = ... in
...

(* FFI array *)
let ffi_array = allocate(byte, 4098) in

(* END preamble *)

let _ = compiled_program;

Figure 5.1. The overall structure of a CakeML program compiled by PureCake,
expressed as OCaml-like pseudocode for accessibility.

first two bytes determines the response length, and the response is copied into a string
for the surrounding context to use.

Figure 5.1 shows the overall compilation of a top-level PureLang program by prepend-
ing the preamble and wrapping with a trivial top-level declaration (let _ = ...). The
latter is necessary because CakeML top-level programs can contain only declarations.
The preamble declares data types and exceptions, defines implementations of primitive
operations, and allocates the byte-array used by FFI calls.

5.2 Reconciling oracles and ITrees

CakeML’s correctness results are phrased in terms of its functional big-step semantics,
which produces linear I/O traces by using an oracle to supply environment responses to
each FFI call (§ 1.2.2). By contrast, PureLang’s ITrees model all possible environment
responses in their branching structure: each Vis node continuation accepts any response
to produce the remaining computation.

In this section, I reconcile these differing semantic styles. First I build on existing
results in CakeML to create a verified ITree-producing semantics for CakeML (§ 5.2.1).
Next, I derive a new compiler correctness theorem with respect to this semantics (§ 5.2.2).

5.2.1 Interaction tree semantics for CakeML

Other than functional big-step, CakeML specifies versions of its semantics in two other
styles: relational big-step and CESK machine [Felleisen and Friedman 1987]. The relational
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big-step semantics is proved equivalent to the functional big-step one. However, the
CESK semantics is partial: it is specified only for CakeML’s expressions, not top-level
declarations, so it cannot express the semantics of a whole CakeML program. The
expression-level CESK semantics is proved mostly equivalent to the relational big-step
semantics; however, observable I/O for diverging programs is not considered. We
specify a CESK semantics for declarations and derive complete equivalence proofs with
the relational big-step semantics. We then define an ITree-producing semantics for
CakeML, verifying equivalence with the enriched CESK semantics. Below is an informal
summary of the various CakeML semantics and their equivalence proofs, with new
contributions outlined.

Declarations:
functional

=
relational

= CESK = ITree
big-step big-step

Expressions:
functional

=
relational

=∗ CESK = ITree
big-step big-step

∗observable I/O for
diverging programs

CESK semantics for CakeML declarations

Specifying top-level declarations in CakeML’s CESK semantics requires careful manage-
ment of environments for local declarations. Consider the following program:

local w = ...; x = ...

in y = ... end;

z = ...

Here, w is in scope when defining x and y, but only y is in scope when defining z. Any
w defined above the keyword local is shadowed when defining x and y, but restored
when defining z. Local declarations can also nest in CakeML.

This scoping has an imperative flavour: an ambient global environment of bindings is
modified by each declaration, and definitions can escape their scopes (e.g., y above). CESK
machines are designed for functional languages: the “current” scope is represented
by an environment, which is either augmented with newly-introduced bindings or
replaced entirely during a change of scope (e.g., evaluation of a closure application).
To support local, we avoid maintaining such an explicit environment. Instead, the
continuation stack stores environment fragments, which can be combined to determine
the current scope: each variable lookup traverses the continuation stack to compute the
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current environment, allowing newer fragments to shadow older ones. Each declaration
produces an environment fragment when evaluated, and we maintain correct scoping
by careful combining and discarding of fragments when returning them to the stack.

The resulting CESK machine expresses transitions (step) between configurations,
triples of a control 𝑐 (the current declaration or environment fragment), mutable store 𝜎,
and continuation stack 𝜅:

step Δ 𝜂 ⟨𝑐, 𝜎, 𝜅⟩ = (⟨𝑐′, 𝜎′, 𝜅′⟩, Δ′, io)

The initial environment is given by 𝜂, and as in § 1.2.2 oracle Δ is invoked (and updated)
during an FFI call, adding to the trace of observable I/O io. Halting configurations
(halt ⟨. . .⟩) cannot make further transitions, and iterating steps (denoted step𝑛) allows
specification of terminating and diverging behaviours (as we will see below).

We establish equivalence with the existing relational big-step semantics for declara-
tions, which is specified in two relations below. Each is parametrised by environment 𝜂,
mutable store 𝜎, and oracle Δ.

Termination: 𝜂; 𝜎; Δ ⊢ decls ⇓ 𝑟; 𝜂′; 𝜎′; Δ′; io

Divergence: 𝜂; 𝜎; Δ ⊢ decls ⇑ io

A series of declarations decls may terminate to some result 𝑟 (either a value or error)
and resulting environment/store/oracle, or diverge with no result. Either way, the
declarations may produce a trace of observable I/O io. Equivalence is phrased in terms
of these relations in theorem 5.1.

Theorem 5.1. Equivalence of relational big-step and CESK semantics.

⊢ 𝜂; 𝜎; Δ ⊢ decls ⇓ 𝑟; 𝜂′; 𝜎′; Δ′; io ⇐⇒
∃ 𝑛 conf . halt conf ∧ (𝑟, 𝜂′, 𝜎′)↭ conf ∧

step𝑛 Δ 𝜂 ⟨Decls decls, 𝜎, 𝜀⟩ = (conf , Δ′, io)

⊢ 𝜂; 𝜎; Δ ⊢ decls ⇑ io ⇐⇒(
∀𝑛. ∃conf io𝑛 Δ𝑛 . ¬ halt conf ∧

step𝑛 Δ 𝜂 ⟨Decls decls, 𝜎, 𝜀⟩ = (conf , Δ𝑛 , io𝑛)
)
∧

io =
⊔

𝑛 {io𝑛 | step𝑛 Δ 𝜂 ⟨Decls decls, 𝜎, 𝜀⟩ = (. . . , io𝑛)}

Termination to a value 𝑟 in the relational big-step semantics coincides with the
ability to produce a suitably equivalent (↭) halting configuration conf in the CESK
semantics after some number of steps 𝑛. Divergence coincides with a lack of halting
configuration for any number of steps. In both cases, the CESK semantics starts with
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an empty continuation stack 𝜀, initial environment 𝜂, and a control containing the
declarations decls. Observable I/O must also coincide; for divergence, the relational
big-step semantics produces an I/O trace equal to the (potentially infinite) upper bound
of all finite I/O traces produced by the CESK semantics.

Theorem 5.1 ports existing expression-level theorems to the level of declarations,
further adding equivalence of observable I/O for divergence (its final line). Though this
is a minor addition to the top-level theorem statement, it requires re-derivation of the
entire expression-level proof with strengthened invariants.

ITree semantics for CakeML

We define a second CESK machine which produces ITrees. Its transition function istep is
nearly identical to step above, but is not parametrised by an oracle and does not produce
observable I/O. Wherever step requires input from its oracle, istep instead produces an
action control, considered a halting configuration (ihalt).

istep 𝜂 ⟨𝑐, 𝜎, 𝜅⟩ = ⟨𝑐′, 𝜎′, 𝜅′⟩ ihalt ⟨action 𝑎, 𝜎, 𝜅⟩

Application of unfold (lemma 2.1, pg. 23) to next_halt below produces the final ITree. In
particular, action halting configurations produce Vis nodes, and non-action configura-
tions produce Ret nodes. Otherwise, no halting configuration exists, producing Div. I
have elided the second argument to Vis’, which accepts response 𝑟 from the environment
and produces an updated version of conf ′ with 𝑟 stored in memory. The semantics of
a top-level CakeML program prog (⟦ prog ⟧ ) is the ITree produced by its declarations
using empty initial environment/stack/store.

next_halt 𝜂 conf def
=



Vis’ 𝑎 (𝜆𝑟. . . .)
∃ 𝑛 conf ′. istep𝑛 𝜂 conf = conf ′ ∧

conf ′ = ⟨action 𝑎, . . .⟩

Ret’ 𝑟
∃ 𝑛 conf ′. istep𝑛 𝜂 conf = conf ′ ∧

ihalt conf ′ ∧ conf ′↭ 𝑟

Div’ ∀𝑛. ¬ ihalt (istep𝑛 𝜂 conf )

⟦ prog ⟧ def
= unfold

(
next_halt ∅ ⟨Decls prog, ∅, 𝜀⟩

)
To reconcile this semantics with the oracle-parametrised semantics, we must traverse

the output ITrees with respect to an oracle to derive a comparable I/O trace. We define
this traversal by an inductive relation, accepting the tree and oracle Δ to produce the
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resulting trace tr and optional outcome 𝑜: tree Δ{ tr, 𝑜.

Ret 𝑟 Δ{ 𝜀, Some 𝑟 Div Δ{ 𝜀, None

Δ(𝑒) = (𝑟, Δ′) 𝑘 𝑟 Δ′{ tr, 𝑜

Vis 𝑒 𝑘
Δ{ (𝑒 , 𝑟) :: tr, 𝑜 tree Δ{ 𝜀, None

Terminal nodes produce empty I/O traces, the Div node further produces no outcome.
Traversal of a Vis node invokes the oracle to determine the environment’s response 𝑟,
and traverses the continuation ITree 𝑘 𝑟 to produce the final outcome 𝑜 and a trace tr
which is prepended with the current I/O event. Traces can be cut short at any point.
Intuitively, this definition produces prefixes of the linear path identified by a given oracle
through the many branches of an ITree.

We show per-oracle that these prefixes and outcomes are identical to those produced
by CakeML’s CESK semantics. By appealing to this result and the equivalences between
CESK, relational big-step, and functional big-step semantics, we derive a phrasing of
CakeML’s top-level semantics in terms of ITrees.

Lemma 5.2. CakeML ITree semantics.

⊢ semantics Δ prog =


Terminate 𝑟 io ⟦ prog ⟧ Δ{ 𝑖𝑜, Some 𝑟

Diverge io
(
¬∃𝑟. ⟦ prog ⟧ Δ{ . . . , Some 𝑟

)
∧

io =
⊔ {

tr
�� ⟦ prog ⟧ Δ{ tr, None

}
Terminating programs produce ITrees which can derive the appropriate I/O trace and
outcome. Diverging programs produce ITrees with no derivable outcomes, and whose
I/O traces have the appropriate upper bound.

5.2.2 Interaction tree compiler correctness for CakeML

Using lemma 5.2, we prove a novel formulation of CakeML’s compiler correctness
theorem, which concerns single traces in its current form (theorem 1.1, pg. 9). We define
an ITree-producing semantics for machine code, deriving a formulation of machine
semantics akin to lemma 5.2. By CakeML’s existing trace-based correctness theorem, we
know that each trace derivable in the source ITree which is not terminated by a type
error gives rise to a trace through the machine ITree. The latter trace is either identical to
the former, or a prefix terminated by an out-of-memory error. But ITrees can be defined
precisely by their derivable traces, a form of extensionality:

⊢ 𝑡1 = 𝑡2 ⇐⇒
(
∀Δ tr 𝑜. 𝑡1

Δ{ tr, 𝑜 ⇐⇒ 𝑡2
Δ{ tr, 𝑜

)
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Quantifying over all derivable traces therefore lifts theorem 1.1 (pg. 9) to a coinductive
pruning relation between ITrees:

conv ⊢ Ret 𝑟 prunes Ret 𝑟 conv ⊢ Div prunes Div

∀𝑟. conv 𝑟 ⇒ conv ⊢ 𝑘 𝑟 prunes 𝑘′ 𝑟

conv ⊢ Vis 𝑒 𝑘 prunes Vis 𝑒 𝑘′ conv ⊢ Ret OOM prunes 𝑡

Pruning equates source and machine ITrees (right- and left-hand sides respectively), with
two caveats: the machine ITree may terminate in an out-of-memory node at any point;
we consider only paths reached by environment responses which satisfy an arbitrary
convention conv. We will use such a convention in § 5.3.

ITree-based compiler correctness (theorem 5.3) is phrased in terms of pruning.

Theorem 5.3. ITree-based CakeML compiler correctness.

⊢ target_configs_ok config machine ∧ safe_itree conv ⟦ prog ⟧ ∧
compile config prog = Some code ∧ code_in_memory config code machine
⇒ conv ⊢ ⟦machine ⟧M prunes ⟦ prog ⟧

The source ITree must satisfy safe_itree conv, that is, no type errors are derivable
along any path reached by environment responses satisfying the convention conv. The
definition of safe_itree conv is nearly identical to that of safe_itree (definition 2.5, pg. 38),
except its Vis rule considers only these convention-abiding responses. Note that omitting
the convention would make this theorem strictly less general.

A weakness in ITree-based compiler correctness. Theorem 5.3 is technically weaker
than theorem 1.1 (pg. 9). It holds only for source ITrees for which all convention-abiding
traces do not produce type errors: there can be no sequence of environment responses
which causes the source program to encounter such an error. However, theorem 1.1 can
be applied to a program which encounters type errors with respect to some oracles, but
not the particular one being used. This weakness does not limit us: we are concerned
only with well-typed PureLang programs, which cannot encounter type errors no matter
the environment’s responses.

However, we might envisage proving correctness with respect to a particular execution
environment, whose characteristics must be encoded in an oracle. In this situation, our
current proof strategy would not suffice. By lifting single-trace correctness (theorem 1.1)
to every-trace correctness, we inherit a weakness: single-trace correctness says nothing
about programs which produce type errors, not even the I/O trace up to the point they
encounter a type error. We conjecture that a stronger version of theorem 1.1 could be
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proved. Though errors may not be preserved by compilation, it is likely that I/O traces
are preserved until the moment the type-error is encountered. Proving this would be
a significant undertaking, requiring re-specification and re-verification of most of the
CakeML compiler back end.

5.3 Correctness of PureCake

We are now in a position to verify the top-level PureCake compiler, relying on our new
ITree semantics for CakeML and its associated end-to-end correctness theorem (§ 5.2).
We will later transport this verification to a compiler binary (§ 5.3.1).

First, we must compose the verification of each compiler pass, proving that the
postcondition of one pass implies the precondition of the next (equation 4.5, pg. 54);
successful type inference implies the first precondition. This produces PureCake’s core
correctness result, theorem 5.4.

Theorem 5.4. PureCake compiler correctness.

⊢ compiler str = Some ast ⇒
∃ ce cns. frontend str = Some (ce, cns) ∧ itree_rel ⟦ exp_of ce ⟧pure ⟦ ast ⟧

If the compiler converts an input string str to output CakeML AST ast , then the compiler
frontend has both successfully parsed str to a PureLang compiler expression ce and a
well-formed constructor environment cns and type-checked ce to deduce that it is safe.
The observable semantics of ce and ast are then related by itree_rel, which effectively
equates PureLang and CakeML ITree-based semantics. It is defined as the coinductive
interpretation of the rules below.

itree_rel Div Div itree_rel (Ret 𝑟) (Ret 𝑟)

∀ 𝑟 r′. ffi_response_rel 𝑟 r′⇒ itree_rel (𝑘 𝑟) (𝑘′ r′)

itree_rel (Vis (ch, 𝑠) 𝑘) (Vis (ch, 𝑠 , bs) 𝑘′)

ffi_response_rel (ok 𝑎) (ok bs) def
= length bs = 4098 ∧
∃ 𝑙0 𝑙1 junk . 𝑏𝑠 = [𝑙0 , 𝑙1] ++ bytes(𝑎) ++ junk ∧

length 𝑎 = 256 × 𝑙1 + 𝑙0

Both ITrees must agree on terminal Ret and Div nodes, and neither may produce a type
error. For Vis nodes (which represent observable I/O via FFI calls), this definition must
reconcile PureCake and CakeML’s differing FFI models (§ 5.1). Both ITrees must agree
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on FFI channel ch and string argument 𝑠, but CakeML will also pass some byte-array bs
to its FFI. Then, the Vis node continuations 𝑘 and 𝑘′ must produce related ITrees after
receiving related FFI responses, as dictated by ffi_response_rel. At its heart, this latter
relation enforces the FFI convention discussed in § 5.1: PureCake’s FFI responses have
a maximum length of 4096 bytes, realised in CakeML as the return of a byte array of
length 4098 bytes, the first two bytes of which represent the length of the response held
in the remainder. I have omitted clauses of ffi_response_rel which concern FFI errors;
both ITrees must agree on these too.

The formulation of theorem 5.4 has a drawback: it hides that the PureCake compiler
back end is total. Any program accepted by the compiler front end (i.e., which parses
and type-checks successfully) is guaranteed to compile correctly to CakeML code.
Theorem 5.5 is an alternative formulation which emphasises this. Testing has shown
that the front end accepts all of the well-formed programs we have written so far (§ 6.1).

Theorem 5.5. Alternative formulation of PureCake compiler correctness.

⊢ frontend str = Some (ce, cns) ⇒
∃ ast . compiler str = Some ast ∧ itree_rel ⟦ exp_of ce ⟧pure ⟦ ast ⟧

To produce an end-to-end correctness theorem for PureCake, we first show that
itree_rel implies safety with respect to our FFI convention:

⊢ itree_rel 𝑡 𝑡 ⇒ safe_itree ffi_convention 𝑡

where ffi_convention 𝑟
def
= ∀bs. 𝑟 = ok bs⇒ ∃𝑟. ffi_response_rel 𝑟 bs

In other words, as long as the CakeML ITree receives only well-formed FFI responses, it
cannot go wrong. Now we can compose theorems 5.3 and 5.4 (pgs. 76 and 77) to produce
theorem 5.6, expressing end-to-end guarantees from PureLang compiler expressions ce
to machine code.

Theorem 5.6. End-to-end correctness.

⊢ compiler str = Some ast ∧ compile config ast = Some code ∧
target_configs_ok config machine ∧ code_in_memory config code machine
⇒ ∃ ce cns. frontend str = Some (ce, cns) ∧

ffi_convention ⊢ ⟦machine ⟧M prunes ⟦ exp_of ce ⟧

If some machine code is generated by the successful composition of the PureCake
and CakeML compilers, and correctly installed in a valid machine, that machine has a
semantics which prunes the semantics of the PureLang compiler expression produced by
the PureCake front end whenever the FFI convention is obeyed.
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Later in this dissertation (pg. 130), I will revisit this end-to-end correctness theorem
and compose it with the contributions described in Part II.

5.3.1 A verified compiler binary

To verifiably compile PureCake, we mimic CakeML’s verified bootstrapping (§ 1.2.2):
proof-producing synthesis generates CakeML AST which correctly implements the
PureCake compiler, and in-logic evaluation of the CakeML compiler lowers this AST to
a verified binary. This binary takes the entire step from PureCake concrete syntax to
CakeML’s S-expression syntax, i.e., the step shown in theorem 5.4 (pg. 77) post-composed
with CakeML’s S-expression printing.

Note that we do not produce a binary which takes the full step to machine code:
users must pipe the S-expression output of the above binary into a CakeML binary, along
with flags to enable S-expression parsing and to disable type inference.

This indirection is an unfortunate trusted step, but one which exists only for superficial
engineering reasons rather than any deeper verification concerns. In particular, the
time taken to produce a verified binary is dominated by slow in-logic evaluation of the
compiler: at the time of writing, PureCake takes four hours, but CakeML takes two days,
which would slow down the PureCake development cycle significantly. This means
we must be sure to use only compatible PureCake and CakeML binaries. There are no
significant obstacles to composing the compilers in a single verified binary if we so wish.
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Chapter 6

Discussion

I have now presented PureCake, an end-to-end verified compiler for PureLang, a
featureful, Haskell-like language. To the best of my knowledge, PureCake lifts the
achievements of CompCert and CakeML to the purely functional paradigm for the
first time, and incorporates novel formalisations of indentation-sensitive PEG parsing,
two-phase constraint-based type inference, demand analysis, and monadic reflection.

In this chapter I discuss the contributions presented in this part, in particular:
PureCake’s real-world usability (§ 6.1), its place amongst related work (§ 6.2), and
potential strands of future work (§ 6.3).

6.1 Usability of PureCake

In this section, I discuss the real-world usability of the PureCake ecosystem. I consider
the expressivity of PureLang (§ 6.1.1), measure the effectiveness of some of PureCake’s
optimisations (§ 6.1.2), and contextualise the performance of PureCake-generated code
using the unverified Glasgow Haskell Compiler (§ 6.1.3).

I do not claim parity with existing industrial implementations of Haskell in expressiv-
ity, usability, or performance. Rather, I hope to identify key areas of improvement for
future versions of PureCake, and reflect on the challenges of producing a realistic verified
implementation of a Haskell-like language.

6.1.1 Expressivity of PureLang

We have written non-trivial programs to demonstrate expressivity of PureLang and
usability of the PureCake compiler. These include the benchmark programs used in
§ 6.1.2 and code inspired by Haskell’s Prelude (e.g., functions over lists and binary trees).
We have encountered no issues: PureCake accepts all the well-formed programs we have
written.
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QuviQ1 have demonstrated PureCake’s applicability to real-world Haskell code
by compiling a virtual machine for smart contract evaluation from the Haskell-based
Cardano blockchain platform. They have further compared the input-output behaviour
of the resulting binary on automatically generated test cases with one produced by GHC,
so increasing confidence both in GHC’s compilation and in PureCake’s capturing of
Haskell semantics. More precisely, they have manually simplified the CEK machine of the
Plutus Core language2 to remove features incompatible with PureLang (mostly modules
and type classes), validating correctness of the refinement using test cases generated
by QuickCheck3 (a property-based automatic test case generator). The simplified
machine is in the fragment accepted by both GHC and PureCake, excepting differing
I/O primitives and cryptographic primitives not yet implemented in PureCake. Further
QuickCheck-generated test cases produce no discrepancies when run on both PureCake-
and GHC-compiled binaries. Their work is open-source4 at the time of writing.

However, PureCake does lack several widely-used Haskell features: type classes,
richer types (e.g., generalised algebraic data types), rich pattern matching (including
function clauses and guarded patterns), and modules. PureCake’s first version is a
trade-off between tractable verification and language expressivity: it implements a
minimal set of features sufficient for real-world usage. In future versions, we intend to
add more features (§ 6.3).

6.1.2 Effectiveness of optimisations

We measure the efficacy of PureCake optimisations in the style of an ablation study: we
disable optimisations individually to highlight their contributions to the performance of
generated code. However, it is difficult to isolate optimisations in a verified compiler with
multiple intermediate languages: some passes establish invariants relied on by future
optimisations, and others bridge gaps between intermediate languages. Worse, single
passes such as the inter-language compilation from PureLang to ThunkLang (§ 4.2.2)
implement several intertwined optimisations at once. Therefore, we consider only the
following, isolatable passes:

• pure, binding group analysis and the associated cleanup within PureLang (§ 3.2);

• demands, demand analysis within PureLang (§ 3.4);

• thunk, the mk_delay smart constructor (§ 4.2.2) and intra-language optimisations
within ThunkLang (§ 4.2.3); and

• state, intra-language optimisation within StateLang (§ 4.4.3).
1http://www.quviq.com/
2https://github.com/input-output-hk/plutus/tree/master/plutus-core
3https://hackage.haskell.org/package/QuickCheck
4https://github.com/Quviq/plutus/tree/purecake/plutus-core

http://www.quviq.com/
https://github.com/input-output-hk/plutus/tree/master/plutus-core
https://hackage.haskell.org/package/QuickCheck
https://github.com/Quviq/plutus/tree/purecake/plutus-core
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Figure 6.1. Graphs showing the performance impact of optimisations—the base-2
logarithm of a ratio of measurements (execution time or heap allocations in bytes)

with/without the optimisation: log2 (𝑚without/𝑚with). The ±all bar shows impact
with/without all optimisations considered. Negligible error bars are omitted.

Benchmarks and measurements. We use five benchmark programs to measure per-
formance. Each accepts integer 𝑛 from the command line and prints:

• primes, the 𝑛th prime calculated using two methods: testing each integer for
divisors, and the sieve of Eratosthenes;

• collatz, the longest Collatz sequence of any number less than 𝑛;

• life, the 𝑛th iteration of Conway’s Game of Life from a particular self-contained
initial state;

• queens, the number of solutions to the 𝑛-queens problem; and

• qsort, quicksort of a reverse-sorted monadic array with length 𝑛.

Each program is implemented relatively naïvely to permit measurable run durations.
For each program, we measure execution time and total heap allocated by the CakeML
runtime (as reported by CakeML’s debug output) using an Intel® Xeon® E-2186G (3.8
GHz) and 64 GB RAM.

Results. Figure 6.1 shows our results, presented as a base-2 logarithm-scale graph of
speedup and reduction in memory allocations. Optimisations reducing unnecessary
thunk allocation and forcing in ThunkLang improve time and space efficiency considerably.
Intra-StateLang optimisations improve efficiency for the monad-heavy qsort benchmark in
particular, by reducing suspended computations and their applications to unit. Binding
group analysis in PureLang has no significant negative effects.

Demand analysis can cause slight regressions as it is overly aggressive, inserting
many seq operations in PureLang to produce many force operations in ThunkLang.
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Many of these are not sufficiently handled by later optimisations. This could also
explain why binding group analysis in PureLang can cause slight negative effects: it
converts non-recursive letrec-statements to let-statements, over which demand analysis
operates more effectively. For now, we have disabled seq-insertion at call-sites pending
development of better heuristics; without this modification performance is significantly
worse (almost 3× for the life benchmark). Note that though demand analysis can cause
increased allocations, it can also produce better liveness properties by ensuring data is live
for shorter durations, which enables more effective garbage collection and a lowered
heap footprint. For example, we can repeatedly apply the simple add function below
to an infinite list of zeros and then index the first element of the resulting list. This
quickly exhausts heap space unless first transformed by demand analysis. This function
is inspired by calculations in the life benchmark: each element of a list is iteratively
updated based on the values of its surrounding elements. Indeed, the life benchmark
uses the seq operator twice: removing these usages slows it down, but disabling demand
analysis at the same time causes it to exhaust heap space.

add :: Integer -> [Integer] -> [Integer]

add x l = case l of [] -> []

h:t -> (x - h + head t) : add h t

6.1.3 Comparison with the Glasgow Haskell Compiler (GHC)

Using the same benchmark programs as § 6.1.2, we compare the efficiency of PureCake-
generated code to GHC-generated code. This is possible because PureCake accepts a
language almost identical to a subset of Haskell (§ 6.1.1). We need only: reconcile the
monad operations of IO in PureLang with those of its counterpart in GHC, including
adapting Array to GHC’s IOArray; replace PureLang primitives with GHC primitives
including inserting casts between Int and Integer where necessary; and use functions
defined in GHC’s Prelude rather than manually defining them as we do in PureLang.
These are minimal changes, mostly removing lines and slightly altering ∼50 more.

Measurements. We measure execution time and memory footprint of PureCake pro-
grams in the same way as in § 6.1.2. We use two of the optimisation levels of GHC version
9.2.8: its default (-O0) which emphasises fast compilation with minimal optimisation; and
its first level (-O1) which aims to generate high-quality code without excessive compile
times. We do not use GHC’s highest optimisation level (-O2).5 We time execution
of GHC-compiled programs straightforwardly, and use profiling features6 to determ-
ine memory allocations. In particular, we compile programs with the options -prof

5The GHC developers use -O1 “to get respectable speed ... when [they] want to measure something.”
(https://downloads.haskell.org/ghc/9.2.8/docs/html/users_guide/using-optimisation.html)

6https://downloads.haskell.org/ghc/9.2.8/docs/html/users_guide/profiling.html

https://downloads.haskell.org/ghc/9.2.8/docs/html/users_guide/using-optimisation.html
https://downloads.haskell.org/ghc/9.2.8/docs/html/users_guide/profiling.html
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Figure 6.2. Graphs comparing the performance of PureCake- and GHC-generated code.
Two optimisation settings are used for GHC: default (-O0) and the first level (-O1).

Base-2 logarithm of speedup and allocation reduction compared to GHC -O0 are plotted.
Negligible error bars are omitted.

-fprof-auto -rtsopts and run them with the options +RTS -p to dump a *.prof file
containing a measure of total byte allocations.

Results. Figure 6.2 shows the results, again presented as a base-2 logarithm-scale graph
of speedup and reduction in memory allocations taking GHC -O0 as a baseline.

Overall, PureCake-generated code performs better than code generated by GHC -O0,
but falls short of -O1. In particular, PureCake-generated code is faster than -O0-generated
code on most benchmarks and allocates less memory on all. When PureCake does
produce slower code (collatz and life) the difference is slight. This is a promising result
for an early iteration of PureCake, given the decades of development on GHC, including
its well-designed Core language and usage of powerful graph reduction techniques.
Note that each ecosystem self-reports its memory allocations, but there are no reasons to
expect inaccuracies.

The queens and quicksort benchmarks show particular shortcomings of PureCake
when compared to GHC -O1. Currently, PureCake implements no optimisations specific
to data types (e.g., deforestation/fusion) or arrays (all array naïvely hold only thunks).
The effects are most pronounced for memory allocations, which is unsurprising given
the high demand for memory in purely functional languages.

6.2 Related work

In this section, I review prior work which is most relevant to PureCake. More general
work is described in § 1.3.
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6.2.1 Verified compilation of Haskell-like languages

The CoreSpec project7 has produced work concerning verified variants of Haskell. Formal
specifications of the syntax, semantics, and typing rules of GHC’s Core have been used
to propose language extensions such as dependent types [Weirich et al. 2017]. The
hs-to-coq [Breitner et al. 2018] tool translates Haskell code to Gallina, Coq’s specification
language, permitting mechanised reasoning about real-world Haskell library code. The
tool itself is unverified, but effectively internalises Haskell’s equational reasoning within
Coq. Some progress has been made in implementing a naïve compiler8 from GHC’s Core
to LLVM IR, aiming to permit verification of semantics preservation from CoreSpec’s
specification of GHC’s Core to Vellvm, a formalisation of LLVM IR [Zhao et al. 2012].
However, no verification has been attempted so far, and the project appears abandoned
at the time of writing. In future work, CoreSpec aims to derive an executable Coq
model of Core automatically from GHC’s implementation, permitting integration of
Coq-verified optimisations in GHC as plugins. This would provide a rare link between
the implementation of an industrial-strength compiler and a formally-specified semantics
within a theorem prover. There is a discrepancy in our aims: CoreSpec focuses on
accurately modelling GHC and so must compromise guarantees with unverified steps,
where PureCake sacrifices some faithfulness to obtain end-to-end verification.

Stelle and Stefanovic [2018] produce the first verified compiler for a minimal, lazy 𝜆-
calculus with an explicitly call-by-need semantics. Compilation to a high-level instruction
machine preserves call-by-need value sharing; conversely reasoning about source-level
programs is challenging and non-termination is not considered. PureLang specifies a
call-by-name semantics to enable straightforward equational reasoning while supporting
a featureful language. We view lazy evaluation as an implementation strategy: a compiler
optimisation which improves the performance of naïve call-by-name compilation.

McCreight et al. [2010] define GCminor, a reusable target for garbage-collected
languages, and verifiably compile it to CompCert’s Cminor. GCminor semantics
encapsulates key aspects of garbage collection, distilling both the configurations and
proof obligations that compilation from source languages must provide. To demonstrate
their approach, they compile a version of GHC’s Core to GCminor via Dminor: a strict,
first-order, purely functional language with monadic effects. Dminor’s novel type system
provides memory safety by relying on runtime checks. Much of the pipeline from
Dminor to GCminor is verified, focusing on allocations in particular. Allocation of
thunks is therefore verified; however, compilation of force is not.

GHC’s arity analysis pass [Breitner 2015] detects functions which can be 𝜂-expanded
to permit more efficient code at call-sites. In particular, this enables effective list fusion

7https://deepspec.org/entry/Project/Haskell+CoreSpec
8https://github.com/nomeata/veggies

https://deepspec.org/entry/Project/Haskell+CoreSpec
https://github.com/nomeata/veggies
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for left-folds, which would otherwise produce inefficient partially-applied closures. To
ensure that𝜂-expansion does not break GHC’s value-sharing with repeated computations,
the transformation is proved correct for a simplified Core language, indirectly relying
on Launchbury’s natural semantics for lazy languages [Launchbury 1993] to model
value-sharing at a suitable level of abstraction (HOLCF [Müller et al. 1999] provides
necessary domain-theoretic constructs). This work highlights the difficulty of developing
an end-to-end verified compiler: verification of a single optimisation requires significant
proof effort even with a much-simplified language and a carefully chosen semantic style.
PureCake’s design choices must instead compromise between each of its optimisations
as well as its compilation to CakeML.

6.2.2 Translation validation of Haskell-like languages

Translation validation [Pnueli et al. 1998] is an alternative method to prove semantics
preservation down to a binary. Unverified compilation is followed by an automatic
proof that the resulting binary faithfully implements the original source code. This
permits verification of code generated by industrial strength compilers, and can also
provide an independently verifiable certificate for zero-trust applications. However,
per-run automated proof can fail, and can be brittle with respect to evolving compiler
implementations.

Krĳnen et al. [2022] tackle this inflexibility by developing translation certification,
which combines automated and manual proof. Their translation relations adopt a
similar approach to § 4.1: syntactic relations are manually proven to encapsulate
semantics-preserving transformations, so automated verification need only prove that
code transformations inhabit these relations. As in PureCake, these syntactic proofs
are much simpler than the semantic verification of the syntactic relations, so translation
certification remains robust to evolving compiler implementations. The independent,
convergent evolution of this approach gives us confidence in its importance.

Translation certification is applied to the Plutus Tx compiler from the Cardano
blockchain platform, which targets Plutus Core (mentioned in § 6.1.1). Plutus Tx is a
subset of Haskell, and its compiler implemented as a plugin for GHC: GHC machinery
lowers Plutus Tx to a System F-like intermediate representation, which is then compiled
to Plutus Core. The latter step is broken down into several syntactic relations, and
compiler output can be proven to inhabit their composition automatically and reliably.
Semantic verification of the syntactic relations is ongoing work at the time of writing.
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6.2.3 Optimising compilation for lazy languages

Many decades of research have culminated in GHC, providing clear inspiration for
future versions of PureCake. At a very high level, techniques such as closure conver-
sion [Landin 1964] and selective lambda lifting [Graf and Peyton Jones 2019] reduce local
definitions to sets of recursive equations, which can be evaluated using graph reduction
techniques [Johnsson 1984] (in particular, the spineless tagless G-machine [Peyton Jones
1992; Peyton Jones and Salkild 1989]). Meanwhile, strictness analyses reduce unnecessary
thunk allocations and associated bookkeeping [Peyton Jones and Partain 1993; Wadler
and Hughes 1987], and deforestation techniques [Wadler 1990] reduce allocation of
intermediate data structures.

6.2.4 Reasoning about lazy languages

Much work has focused on the cost of lazy evaluation, which is complicated by stateful
value-sharing. Moran and Sands [1999] created a framework to verify the correctness
and cost-improvement of compiler transformations: i.e., preserving semantics without
increasing evaluation cost. Recently, the clairvoyant call-by-value semantics [Hackett and
Hutton 2019] has enabled local, modular reasoning for cost and improvement analyses [Li
et al. 2021b].

Schmidt-Schauß et al. [2015] prove equivalence of several notions of contextual
equivalence in a Core-like call-by-need calculus. Proof is via fully abstract translation to
a call-by-name calculus, in which they too employ Howe’s method (§ 2.4.2).

6.2.5 Verified compilation to CakeML

The mature CakeML ecosystem has become a useful common back end for verified
compilation, e.g., by Kalas and Isabelle/HOL.

Kalas [Pohjola et al. 2022] verifiably compiles a choreographic language, expressing
global specifications of deadlock-free communications between a system of endpoints.
Compilation projects individual endpoints out of the global specification, producing a
program per endpoint such that simultaneous execution of all programs implements the
global specification.

Hupel and Nipkow [2018] compile Isabelle/HOL functions to CakeML using a
mixture of certifying and verified compilation, removing the formalisation gap when
extracting programs verified in-prover (cf. CakeML’s proof-producing synthesis, § 1.2.2,
for similar motivation in HOL4). Initial certifying passes compile Isabelle’s type classes to
dictionaries and reify terms to a deeply-embedded data type. This data type is correctly
compiled to CakeML via a series of optimisation passes. The net result is translation of
shallowly embedded definitions to deeply embedded CakeML code, like the CakeML
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translator. However, where CakeML steps directly from shallow HOL4 to deep CakeML,
Hupel and Nipkow [2018] step from shallow Isabelle/HOL to deep Isabelle/HOL, then
to deep CakeML. Only the first part of this is certifying (i.e., per-run, and can fail); the
second is proven correct once and for all.

6.2.6 Reconciling oracles and ITrees

As in § 5, ITrees are known to admit simple connections to trace-based semantics [Xia
et al. 2020, §7]. Koh et al. [2019] axiomatise system calls in the Verified Software
Toolchain’s [Appel 2011] separation logic for CompCert’s Clight by specifying their
permitted external interactions using ITrees. Mansky et al. [2020] build on this by
proving the ITree-based specifications sound with respect to oracle-based CertiKOS [Gu
et al. 2016] specifications, which consider only linear traces. Like in § 5.2, their proofs
rely on traversal of ITrees to derive traces. They need only consider only one direction,
showing that each ITree specifying the permitted interactions of a CompCert system call
encompasses all possible traces of the underlying CertiKOS specification. In particular,
the ITree can contain traces which are not derivable in the CertiKOS specification, as this
does not compromise soundness of the separation logic.

6.3 Future work

The work presented in this part is only a first version of PureCake, and we have identified
several avenues of future work. So far, PureCake has grown organically, beginning with
PureLang and its equational theory (§§ 2.2 and 2.4). With the insights gained from its
complete implementation and end-to-end verification, we can carefully plan future work.

Compiler front end. PureCake’s front end is the most obvious candidate for improve-
ment, to bring it more in line with real-world Haskell implementations. For example,
PureCake currently lacks user convenience features such as a module system.

Type class support will require a significant re-design. Parsing must be enriched to
support the necessary syntactic constructs, and could further be verified to conform to a
context-free grammar once PureLang concrete syntax has stabilised. We then envisage
creating a typed AST (TAST) directly above PureLang to ensure static resolution of type
classes. Type inference must then bridge the gap between the untyped AST produced by
parsing and TAST (i.e., annotating expressions with their types, not just checking them).
Our proof-of-concept inference must gain type class support, inspired by Helium, and
can further port more of Helium’s constraint representations and precision. A standard
dictionary construction [Hall et al. 1996] can lower TAST to the untyped PureLang, which
must be enriched with records. Defining a semantics for TAST (which is typed) could
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permit our end-to-end theorem to span from TAST to machine code, but in HOL4’s
simply typed logic we must carry around cumbersome invariants concerning well-typing
instead of baking them in using generalised algebraic data types.

We could further consider a typed equational theory over TAST to permit clean
verification of intra-TAST optimisations. For example, we could flatten nested pattern
matches by relying on typing information. Alternatively, we could split the TAST-to-
PureLang step in two by compiling TAST to a HOL4-mechanised GHC Core (which is
also typed). This would permit direct lifting of Core-level optimisations from GHC
(some are mentioned in § 6.2.3).

Our demand analysis requires better heuristics for seq-insertion, and implementation
of supporting optimisations in ThunkLang (see below). Support for recursion too can be
extended, e.g., removing the requirement for A-normal form.

Compiler back end. We implement a small number of optimisations in ThunkLang
which reduce unnecessary laziness, but much more work is required here. In particular,
there is a disconnect between demand analysis’ insertion of seqs and their usage by
optimisations in ThunkLang. To simplify verification of intra-ThunkLang optimisations,
we could consider formalising an equational theory for ThunkLang using step-indexed
logical relations [Ahmed 2004]. Otherwise, we can port back end optimisations from
GHC and other Haskell implementations.

Further afield, we envision a verified, ghci-like read-evaluate-print loop (REPL) for
PureCake inspired by CakeML’s own verified REPL [Sewell et al. 2022].



Part II

A realistic machine semantics for
compiler verification
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Outlook

Rigorously verifying the behaviour of software requires faithful modelling of the
hardware on which it runs. An instruction set architecture (ISA) provides a convenient
abstraction of hardware behaviour, carving out an envelope of permitted behaviours for
the family of processors which implement it. Hardware designers are responsible for
ensuring that each processor adheres to its ISA, so that software developers need only
consider the ISA’s specification to gain portability across an entire family of processors.
Software verification with respect to a single ISA is then equally valid for all of its
implementations, including ones which are yet to be designed.

However, modern, mainstream ISAs are highly complex. Documentation can run into
thousands of pages and covers topics such as: processor state (operating mode, registers,
and memory); instruction encoding, semantics, and assembly syntax; memory models,
memory protection (virtualisation), memory attributes, and caching; synchronisation
and semaphores; debug, trace, and monitoring; interrupts, timers, and exceptions.

Compiler verification efforts often rely on specifications which greatly simplify
this complexity, compromising their connection to reality and so undermining the
foundations of claimed results.

In this part, I develop techniques to handle the complexity of authoritative, high-
fidelity specifications of Arm ISAs for use in compiler verification. I apply these
techniques to CakeML by using such a specification to strengthen trust in the correctness
of its compilation to Arm processors. First, I extract a near-complete formal specification
of the Armv8 ISA from official Arm descriptions mostly automatically (§ 7). Second,
I tame this complex specification once and for all so that compiler verification efforts
can rely on its high fidelity without the burden of its complexity (§ 8). Third, I use this
tamed specification to re-derive correctness of the CakeML compiler, producing the first
compiler correctness theorem connected to an official ISA specification for a mainstream
architecture (§ 9). Finally, I discuss the implications of these techniques and their place
in the wider research landscape (§ 10).
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Chapter 7

Instruction set specification

To reason about an instruction set with high confidence, we require a machine-readable
specification of its semantics, as opposed to traditional prose and pseudocode. For
verified compilation, this specification must be readable by a theorem prover. In this
chapter, I use existing state of the art tools to generate a HOL4-readable Arm instruction
set specification from official Arm sources.

First, I describe these existing tools: domain-specific languages for the engineering
of instruction set specifications (§ 7.1), particularly those used to specify Arm architec-
tures (§ 7.2). Then, I leverage the tools to produce an Arm specification in HOL4 mostly
automatically (§ 7.3). I believe this is the first such specification used for interactive proof
in HOL4. Therefore, aside from informing future chapters, this chapter is a summarised
usage report aiding future (re)production and (re)use of such specifications.

7.1 Machine-readable specifications

Usage of machine-readable instruction set specifications has many benefits, including:

• Avoidance of ambiguities and errors detected by parsing and type-checking;

• Robust validation paths through simulation-based testing;

• Formal verification of processor designs through model-checking [Goel et al. 2020;
Reid 2016d; Reid et al. 2016];

• Support for other formal modelling and verification activities, e.g., work on:

– memory and concurrency models [Flur et al. 2016, 2017; Gray et al. 2015; Pulte
et al. 2018],

– security [Bauereiss et al. 2022; Chlipala 2019; Nienhuis et al. 2020; Reid 2017f],
– OS and hypervisor verification [Baumann et al. 2016; Gu et al. 2016; Guanciale

et al. 2016; Klein et al. 2009; Leinenbach and Santen 2009; Li et al. 2021a],
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– compiler and runtime verification [Fox et al. 2017; Leroy 2009; Myreen 2010;
Myreen and Davis 2011; Myreen and Gordon 2009], and

– machine code verification [Armstrong et al. 2021; Fox 2015; Goel and Hunt
2013; Lindner et al. 2019].

In general, they do not cover all aspects of ISAs comprehensively, but provide at least a
working reference semantics for machine code. As ISAs become more complex, it has
become necessary to create domain-specific languages (DSLs) to streamline rigorous
engineering of their specifications: architecture specification languages. The domain of
architecture specification lends itself to languages with some common features.

First-order, imperative, statically typed. The simplicity of first-order languages is
well-suited to the description of low-level processor behaviour, and permits efficient
translations to e.g., C simulation code. As with any DSL, there are implementation and
readability penalties associated with unnecessary expressivity. Some form of looping
construct is generally supported.

Imperative operations access a global mutable state, which represents the state of the
processor (including registers, flags, memory, and configuration). Typically, the state can
be declared incrementally, introducing each part in the context in which it is needed.

Strong static typing enables early error-detection, and type inference reduces the
burden of type annotations. Users can often define records; some languages support poly-
morphic options/lists or even definition of algebraic data types. A built-in “undefined”
value models architecturally unknown or underspecified values.

Scattered functions. Large function definitions can be split up and scattered through
source files, effectively defined piecewise in amongst other definitions. For example,
a specification must define the encoding, decoding, and execution behaviour of each
instruction it models. In a language without scattered functions, this results in three
large functions (encoder, decoder, and executor), each of which defines a clause per
instruction. Using scattered functions, each such clause can be defined separately. To
specify an instruction instr, we need only define its clauses in isolation:

encode instr def
= . . . decode instr def

= . . . execute instr def
= . . .

In this way, all definitions relevant to instr can be localised, mimicking the documentation
style of architecture reference manuals. Using a machine-readable specification as human-
readable documentation is therefore straightforward.

In the restricted domain of architecture specification, scattered functions provide a
solution to the expression problem [Wadler 1998], a tension in programming language
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design: does a language permit straightforward extensibility of both data type syntax
and data type behaviour? In other words, can we add new data constructors (i.e., a new
instruction type) and new behaviour (e.g., an alternative decoder) without refactoring
existing code? With scattered functions, this is straightforward: a new instruction need
only define its entries in existing functions; a new function need only define clauses for
each instruction. Critically, the new code can be appended to the existing specification.

There is a caveat: non-orthogonal/overlapping scattered clauses can be difficult to
decipher. Often, clause priority is dictated by order of appearance.

Bit vector support. Strong bit vector support is necessary for streamlined specification
of processor behaviour. Bit vectors are therefore available as primitives, with a wide array
of built-in operations. Support for pattern matching on bit vectors also simplifies decoder
specification. Bit vectors can be translated to efficient machine-words for simulation (e.g.,
64-bit bit vectors can be simulated by 64-bit unsigned integers).

Bit vector types (bits(𝑛)) usually support some lightweight dependent typing over
the length of the bit vector (𝑛). The degree of support varies considerably amongst
architecture specification languages, but can permit reasoning about:

• bit vector concatenation and slicing;

• valid indexing of bit vectors and arrays;

• restricted domains of functions which e.g., only accept whole-byte bit vectors;

• length dependencies, e.g., one value describing the length of another, variants of
instructions which operate on different bit vector sizes.

7.2 Arm specifications

Specifications of Arm ISAs are available in three architecture specification languages:
ASL [Reid 2017e], Sail [Armstrong et al. 2019], and L3 [Fox 2012]. ASL emerged in 2011,
building on the pseudocode language used in Arm documentation since the late 1990s.
L3 and Sail were conceived in academia concurrently, with differing objectives; L3 was
implemented in 2011 ahead of Sail.

In this section, I describe each of these languages at a high level to better inform
the rest of this part. To give a flavour of each language, I show simple specifications of
addition/subtraction (immediate) instructions (assembly shorthands add[s] and sub[s]);
readers need not understand every detail of these. Later, we will use ASL and Sail to
obtain a high fidelity Arm specification in HOL4 (§ 7.3), and rely on L3’s state of the art
support for theorem proving in our own interactive proofs (§ 8).
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7.2.1 ASL

ASL is Arm’s own architecture specification language, with broad design objectives.
Originally, it was intended to reduce errors in the informal pseudocode found in Arm
documentation by providing parsing and type-checking [Reid 2016a, 2017a]. The
language has since evolved and is now in extensive use within Arm.

Figure 7.1(a) shows an ASL specification of the execution of add[s]/sub[s] instructions.
ASL’s type system provides expressive lightweight dependent types but does not
bounds-check bit vector accesses. This avoids the need for flow-sensitive type inference,
that is, type inference which takes control flow into account [Tobin-Hochstadt and
Felleisen 2008]. It is therefore simpler to provide an efficient ASL implementation, clear
error messages, and predictable behaviour for programmers. An exception-handling
mechanism streamlines specification of error cases.

ASL’s design prioritises fully-automated verification and testing (model-checking,
SMT verification, and simulation). Arm produces near-complete ASL specifications
for its ISAs via the same internal processes used to generate conventional architecture
documentation. These are further subjected to rigorous internal testing to ensure full
architecture compliance [Reid 2016d, 2017d,e]. They are then released publicly, allowing
users to inspect and even run them.

7.2.2 Sail

The Sail language [Armstrong et al. 2019] and ecosystem is actively developed by the
Rigorous Engineering of Mainstream Systems (REMS)1 project. Initially designed for
use in concurrency tools, it is now one-size-fits-all: it supports many ISAs, and its rich
ecosystem permits extraction to diverse targets such as theorem proving (interactive and
automated), symbolic evaluation, simulation, and documentation. Its design is therefore
a careful balance of expressivity: it must idiomatically model real-world ISAs, while
keeping translations simple.

I defer showing a Sail specification of add[s]/sub[s] instructions until § 7.3.1. The
language effectively supports a superset of ASL to permit automatic translation from
ASL [Armstrong et al. 2018a] using a tool known as asl_to_sail (§ 7.3.1). Its type
system tracks effects to ensure memory and register accesses are visible at the type
level, supports dependently typed integer ranges, and statically bounds-checks all bit
vector accesses. The latter is achieved using flow-sensitive type inference over liquid
types [Rondon et al. 2008]. A bidirectional algorithm [Pierce and Turner 1998] generates
constraints, propagates them according to program flow, and discharges them using
the Z3 SMT solver [de Moura and Bjørner 2008]. In general, users need only provide

1https://www.cl.cam.ac.uk/~pes20/rems/

https://www.cl.cam.ac.uk/~pes20/rems/
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__instruction add_sub_immediate
__encoding adds ...
__encoding add ...
__encoding subs ...
__encoding sub ...
__execute
bits(datasize) result;
bits(datasize) op1 = if n == 31 then SP[] else X[n];
bits(datasize) op2 = imm;
bits(4) nzcv;
bit carry_in;
if sub_op then
op2 = NOT(op2);
carry_in = '1';

else carry_in = '0';
(result, nzcv) = AddWithCarry(op1, op2, carry_in);
if setflags then PSTATE.[N,Z,C,V] = nzcv;
if d == 31 && !setflags then SP[] = result;
else X[d] = result;

(a) ASL. I omit __encoding directives, which specify opcode variants and the decoding of each
variant to input values datasize, n, imm, sub_op, setflags, and d. Operands op1 and op2 are

read from registers SP/X[n] and immediate imm respectively, and added/subtracted by
AddWithCarry according to the flag sub_op. The result is saved, and Arm’s condition flags

within processor state PSTATE are updated according to the flag setflags.

define Data > AddSubImmediate
(sf::bits(S), sub_op::bool, setflags::bool,
imm::bits(S), n::reg, d::reg) with S in 32, 64 = {

op1 = if n == 31 then SP else X(n);
op2 = imm;
op2, carry_in = if sub_op then (~op2, true) else (op2, false);
result`S, nzcv = AddWithCarry (op1, op2, carry_in);
SetTheFlags (setflags, nzcv);
if d == 31 and not setflags then SP ← result
else X(d) ← result

}
(b) L3. This specification closely mirrors the ASL above.

dfn’AddSubImmediate (sf ,sub_op,setflags,imm,n,d) state def
=

(let
(op2,carry_in) = if sub_op then (¬imm,T) else (imm,F);
(result,nzcv) =

AddWithCarry (if n = 31𝑤 then SP state else X n state,op2,carry_in);
s = SetTheFlags (setflags,nzcv) state

in if d = 31𝑤 ∧ ¬setflags then write’SP result s else write’X (result,d) s)
(c) L3-derived HOL4 (pretty-printed). This specification is readable and idiomatic, and maps

directly to the original L3 above. Processor state is now passed as an argument and the definition
of op1 has been inlined at the call to AddWithCarry.

Figure 7.1. ASL, L3, and L3-derived HOL4 specifications of addition/subtraction
(immediate) instructions (assembly shorthands: add[s], sub[s]).
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top-level type signatures for Sail to reconstruct full typing information.
Other notable language features include register references and bidirectional map-

pings. Register references allow users to pass handles to registers as arguments,
simplifying specification of some ISA features. Bidirectional mappings permit definition
of both directions of a bidirectional function at once, e.g., conversions from assembly
language syntax to their encodings and vice versa. This technique has been applied to
RISC-V specifications, but Arm assembly syntax is considered too complex for now.

Sail’s ecosystem provides toolchains to translate from ASL to Sail, and from Sail to
specifications in Coq and Lem, executable simulators in OCaml and C, and SMT formats.
Lem, in turn, is a lightweight language for engineering reusable semantic models,
inspired by both functional programming languages and proof assistants [Mulligan et al.
2014; Owens et al. 2011]; its ecosystem provides translations to HOL4 and Isabelle/HOL,
amongst others. However, Sail’s featureful language and broad ecosystem make it less
directly connected to theorem proving back ends than our final language, L3.

7.2.3 L3

L3 [Fox 2012] is designed to manage the complexity of writing ISA specifications for
use in theorem provers: previous work constructed verbose specifications directly in
HOL4 [Fox 2003; Fox and Myreen 2010]. All L3 specifications can be extracted directly
(rather than via Lem) to valid HOL4 and Isabelle/HOL, producing streamlined and
idiomatic definitions.

Figure 7.1(b) shows an L3 specification of add[s]/sub[s] instructions. L3 has a simpler
type system than ASL and Sail, supporting only concrete bit vector width restrictions on
declared function arguments. Such restrictions produce functions which are defined
only for bit vectors of certain widths. It additionally supports built-in finite maps and
finite sets.

However, L3’s ecosystem minimises the effort of specification-writing and maximises
usability within prover back ends. Construction of an AST for instructions is prioritised,
with support for a user-defined hierarchy of instruction classes. Instruction syntax,
encoding, and semantics can be declared simultaneously using a packaged declaration
form. Register types can be given named sub-fields for easy access, and reads/writes can
be overloaded to hide complexity seamlessly. Two styles of specification can be extracted
from L3: one which uses a state monad to keep track of processor state, another which
uses HOL4’s let-expressions. The latter produces highly idiomatic definitions in HOL4,
e.g., the extracted HOL4 specification of add[s]/sub[s] instructions in figure 7.1(c).

L3 is designed to favour specification of valid code paths: exceptions can be declared
and raised, but not handled. Extensive automation simplifies creation of next-step
libraries: concise Hoare triples which provide tractable, rule-based instruction semantics
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in interactive proof by explicitly stating conditions for well-definedness of instructions
(i.e., avoiding exceptions and unknown or underspecified behaviour). These Hoare
triples are based on opcode patterns, tackling whole classes of instructions at a time.

Unofficial L3 specifications have been produced for many different architectures:
Armv4 through to Armv8 (the latter AArch64 mode only), MIPS, x86 (core 64-bit mode
instructions only), and RISC-V. The Armv7 specification in particular has been extensively
validated against Arm hardware. To keep generated prover specifications idiomatic,
L3 Arm specifications refactor official ASL ones in certain key areas, e.g., preferring
bit vectors to integers, sharing common logic where possible, and manually defining
efficient instruction decoders.

L3’s approach to trustworthiness is to implement a syntax similar to the pseudocode
in architecture reference manuals, allowing specifications to mirror manuals closely.
For example, the specification in figure 7.1(b) resembles the one in figure 7.1(a). The
extracted theorem prover model is considered the trusted specification.

7.3 Generating a HOL4 specification for Armv8

We have seen that Sail’s ecosystem includes an ASL front end to translate official ASL
specifications into Sail, and a HOL4 back end to translate Sail specifications into HOL4
via Lem (§ 7.2.2). Put together, these provide a pathway from official ASL specifications
to HOL4. To the best of my knowledge, there is currently no way to obtain a more
faithful Armv8 specification in an interactive theorem prover: the extensive Arm-internal
validation of ASL specifications provides the closest approximation to ground truth for
the semantics of the Arm ISA.

In this section, I review the process of generating a HOL4 specification from official
ASL. We rely entirely on the Sail ecosystem, but its design choices have important
implications for the resulting specification. Armstrong et al. [2019] provide further
details for the interested reader.

The diagram below depicts the pipeline for translation; in the upcoming subsections
I describe each stage in turn and show the specification of add[s]/sub[s] that it produces
from the ASL in figure 7.1(a) (pg. 96). The Sail ecosystem is under active development,
and at present, the process requires some manual intervention. I am indebted to the Sail
developers for helping navigate this space.

ASL Sail Lem HOL4asl_to_sail

§ 7.3.1
sail -lem

§ 7.3.2
lem -hol

§ 7.3.3
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7.3.1 ASL to Sail

The tool asl_to_sail2 translates ASL specifications into Sail. It uses ASLi (“ASL inter-
preter”) [Reid 2020] to parse and type-check input ASL. The MRA tools collection [Reid
2017b] can be used to extract the input ASL from public, XML-format specifications
released by Arm. However, we simply use an ASL specification provided by Arm.

Figure 7.2 shows the Sail specification of add[s]/sub[s] instructions extracted from the
ASL in figure 7.1(a) (pg. 96). As Sail can be considered a superset of ASL, the translation is
relatively naïve. Some optimisations are made, for example turning mutable assignments
into immutable let-bindings (e.g., op1 in the running example). Sail’s richer type system
complicates the extraction, and its flow-sensitive type inference is carefully designed to
accommodate automated translation from ASL. For example, ASL’s prevalent runtime
assertions are taken into account as part of control flow: when checking code after an
assertion, Sail can assume that the assertion holds. Even so, some interactive patching is
required. In these cases, asl_to_sail halts to request a patch, displaying the original
ASL, generated Sail, and the failed typing derivation. The changes required are often
straightforward restrictions to permit inference of tighter typing constraints. For example,
lifting subexpressions to immutable let-bindings, or specialising type signatures with
effect annotations or bit vector width restrictions. However, Sail’s type derivation output
can be difficult to understand without in-depth knowledge of the type-checker.

Some ASL primitives are concretised in Sail. One important example is SEE, a
construct used to disambiguate overlapping opcode spaces: the specifications of many
Armv8 opcodes refer to another overlapping instruction, so SEE directs readers to
“see” the other instruction. Therefore, in ASL it accepts a single instruction as an
argument. In Sail, SEE is concretised using a designated exception, Error_See. It is up
to the caller to handle this exception when invoking a function which might throw it:
decoding/executing a particular opcode requires calling the decoder enough times to
resolve the overlap. But we must be careful to avoid looping repeatedly on the same
Error_See exception, so Sail introduces a global integer variable, also known as SEE.
Each decoding/execution function clause is numbered by appearance, and is guarded: it
can only execute if its assigned number is less than the current value of the SEE variable.
Each clause body also updates SEE to its assigned number as its first action. Therefore,
once we have entered a function clause, we cannot execute it again in the same decoding
attempt because its guard will fail: SEE grows monotonically during repeated decoding
attempts, and we progress through any chains of referrals systematically. Once a function
clause has been fully executed successfully, SEE is set to -1.

We are grateful to Arm Limited and the Sail developers for providing an Armv8.6
A-class ASL specification and the necessary patches to translate it.

2https://github.com/rems-project/asl_to_sail

https://github.com/rems-project/asl_to_sail
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val execute_add_sub_immediate :
forall 'd 'datasize 'n ('setflags : Bool) ('sub_op : Bool),
(0 ≤ 'n & 'n ≤ 31 & 'datasize in {32, 64} & 0 ≤ 'd & 'd ≤ 31).

(int('d), int('datasize), bits('datasize), int('n), bool('setflags), bool('sub_op))
-> unit effect {escape, rreg, undef, wreg}

function execute_add_sub_immediate (d, datasize, imm, n, setflags, sub_op) = {
result : bits('datasize) = undefined;
let op1 : bits('datasize) =
if n == 31 then SP_read(datasize) else X_read(datasize, n);

op2 : bits('datasize) = imm;
nzcv : bits(4) = undefined;
carry_in : bits(1) = undefined;
if sub_op then {
op2 = not_vec(op2);
carry_in = 0b1

} else carry_in = 0b0;
(result, nzcv) = AddWithCarry(op1, op2, carry_in);
if setflags then (PSTATE.N @ PSTATE.Z @ PSTATE.C @ PSTATE.V) = nzcv;
if d == 31 & not_bool(setflags) then SP_set(datasize) = result;
else X_set(datasize, d) = result;

}

Figure 7.2. Sail extracted from the ASL specification in figure 7.1(a) (pg. 96). The type
signature uses liquid types to constrain bit vector widths and declares possible effects.

ASL’s implicit undefined values have become explicit.

7.3.2 Sail to Lem

Translation from Sail to Lem is more involved: Lem mirrors its HOL4 and Isabelle/HOL
back ends, so imperative must become functional, and lightweight dependent types must
become simple types. Sail also ships with hand-written Lem libraries encapsulating
its built-in types and operations, building on the libraries that ship with Lem itself. I
highlight some key aspects of the translation here; figure 7.3(a) (pg. 104) shows the Lem
specification of add[s]/sub[s] instructions translated from the Sail in figure 7.2.

State/exception/non-determinism monad

The Lem libraries for Sail include the implementation of a monad designed to represent
imperative, effectful Sail code. During translation, Sail specifications are converted to
A-normal form [Sabry and Felleisen 1992] to make explicit the calculation of intermediate
values, and embedded into a state/exception/non-determinism monad of approximately
the following type (where 𝜎 is the state type, 𝛼 the return type, and 𝜀 the exception type):

(𝛼, 𝜀, 𝜎) M def
= 𝜎→

(
(𝛼, 𝜀) Result × 𝜎

)
set (𝛼, 𝜀) Result ::= Value 𝛼 | Ex 𝜀
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This monad models non-determinism using a set of possible outputs. Monadic return,
bind, and exception-handling operators are defined standardly (returnS, bindS, and
throwS/try_catchS respectively). The running example uses standard shorthands≫ and
≫= for bindS.

Imperative early-return statements are modelled by extending the exception type to
a sum to produce the “early-return monad”, in which (𝛼, 𝛼 + 𝜀, 𝜎) M is the type of a
function which may return its result (of type 𝛼) early. In other words, early-return is
considered another type of exception, and the early_returnS operator is a shorthand for
throwS ◦ injl. Early-return functions are wrapped by catch_early_returnS to embed them
back into the original monad; liftRS lifts from the original monad to the early-return one;
and try_catchRS catches true exceptions in the presence of early-return:

⊢ catch_early_returnS (early_returnS res) = returnS res

⊢ catch_early_returnS (liftRS (returnS res)) = returnS res

⊢ catch_early_returnS (liftRS (throwS err)) = throwS err

⊢ try_catchRS (liftRS (throwS err)) f = f err

Where possible, Sail translates local mutable variables to let-bindings to avoid the
need for local monadic state. However, this is much more limited than L3’s let-expression
extraction mode (§ 7.2.3).

Data representation

Users can choose to translate bit vectors as lists of three-value logic “trits” or machine-
words from default Lem libraries. The Lem libraries for Sail define a type class
for bit vectors: distinct trit-list and machine-word instantiations permit relatively
straightforward switching between the two. There is a key trade-off here: trit-lists are
a simpler extraction target, but require extra reasoning about bit vector widths (i.e.,
list lengths); machine-words have type-backed widths but require further processing
(monomorphisation, see below) to target Lem’s simply typed setting. We use the
machine-word representation (mword in the running example): this has stronger library
support and more efficient in-logic evaluation procedures within HOL4.

The Lem libraries for Sail also define a record type to represent Sail’s register
references (§ 7.2.2). During translation, each register declared in the Sail specification
produces an instance of the Lem record type. Each such instantiation reg has a type
(𝜌, 𝜈, 𝜏) register_ref, where: the register contains a value of type 𝜏; 𝜌 is the type of
the entire register state (i.e., a data type which holds the values of all registers); and
𝜈 is an internal representation type gathering all possible register values (i.e., all the
instantiations of 𝜏). In practice, 𝜌 and 𝜈 are effectively fixed after extracting a Sail
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specification to Lem. Register references contain the following components:

Component Type Purpose

reg.name string canonical register name
reg.read_from 𝜌 → 𝜏 read register from register state

reg.write_to 𝜏 → 𝜌 → 𝜌 write register to register state
reg.of_regval 𝜈 → 𝜏 option

}
conversions to/from

reg.regval_of 𝜏 → 𝜈 the internal 𝜈 type

Extracted specifications read from and write to a register reg using read_regS reg and
write_regS reg new_value respectively. For example, the second half of the running
example repeatedly reads/writes to processor state using PSTATE_ref.

Monomorphisation

Sail functions over bit vectors can be both dependently typed and polymorphic, which is
incompatible with Lem’s simple types. Arm specifications make heavy use of assertions
and case splits on bit widths, which produce many dependently typed functions.

Sail attempts to partially monomorphise such functions: similar to C++ template
expansion, each call-site of a polymorphic function could in theory produce a type-
specialised version of its definition. For example, consider a Sail function accepting any
bit vector of width divisible by 8, and returning its length in bytes:

lenBytes : ∀𝑛. bits(𝑛 × 8) → int

If this is applied to arguments of types bits(16) and bits(32), naïve monomorphisation
could produce two type-specialised versions in Lem:

lenBytesbits(16) : word16 → int lenBytesbits(32) : word32 → int

Sail’s monomorphisation is inspired partly by prior work translating ASL to Verilog [Reid
2017c]. Case splits on bit vector widths and integer type variables are introduced until
these can remain constant throughout a function, and constant propagation through
functions determines these widths. Sail’s type-checker drives the process throughout.

However, full monomorphisation is not required as Lem permits polymorphism
over bit vector widths (i.e., functions over bit vectors can be width-agnostic), and is not
desirable as it causes code duplication and alters the structure of the input specification.
If a function can be case-split to maintain consistent bit widths over each case, the various
cases can be recombined into a single polymorphic definition. In the example above,
lenBytes treats bit vectors of types bits(16) and bits(32) uniformly, so lenBytesbits(16) and
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lenBytesbits(32) will be recombined into one final, polymorphic Lem function:

lenBytes𝛼 : 𝛼 word → int

To achieve this, Sail inserts bit vector extension operations without changing values,
and simplifies type signatures until they become Lem-compatible. It converts bit vector
slicing operations (which rely heavily on dependent typing) into masking operations
wherever possible. Note that lenBytes𝛼 accepts bit vectors of widths not divisible by 8,
where the original Sail function (lenBytes) does not. However, as all call-sites of lenBytes
type-check in Sail, we know it will never receive such inputs.

Simplification of type signatures prior to monomorphisation further reduces code
duplication. The Sail developers provide the following example, which simplifies load to
load’ [Armstrong et al. 2019, §4.1]:

load : ∀𝑛, 𝑛 ≥ 0 . bits(64) → bits(8 × 𝑛) → bits(64)
load’ : ∀𝑛 𝑚, 𝑛 ≥ 0 ∧ 𝑚 = 8 × 𝑛 . bits(64) → bits(𝑚) → bits(64)

The Lem-inexpressible bits(8×𝑛) type becomes the equivalent, expressible bits(𝑚), where
𝑚 is quantified at the top-level. Once again, the Sail type-checker ensures that the
constraints on 𝑛 and 𝑚 are never violated, and drops them on translation to Lem.

In the running example, bit vector width constraints and declared effects in the Sail
type signature of figure 7.2 (pg. 100) are dropped to produce the Lem type signature in
figure 7.3(a). Though the Sail width 'datasize takes two possible values (32 or 64), the
output Lem is a single function which is polymorphic over 'datasize.

While Sail remains under active development, the class of specifications which
monomorphise successfully is a moving target.

Other code transformations

Scattered function clauses are collected into single, monolithic functions, with clauses
ordered by appearance. Each function clause may be guarded in Sail, so the guards are
converted to if-statements.

Both ASL and Sail support an “undefined” built-in, used extensively in Arm spe-
cifications to model architecturally unknown values. Lem must explicitly implement
this built-in: for each declared type in a specification, Sail automatically generates
a function to produce the corresponding undefined value. In the running example,
undefined_bitvector implements undefined values for bit vectors.

Sail unrolls recursive functions whose recursion depth can be determined, removing
the need for some termination proofs in theorem prover back ends. Users can also
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manually tweak parts of a specification by providing alternative function implementations
to splice in. We make use of this splicing feature to modify our specification (§ 8.1).

7.3.3 Lem to HOL4

Lem straightforwardly translates to HOL4, though the raw specifications are not human-
friendly until parsed/pretty-printed by HOL4: all expressions are type-annotated
and fully-bracketed. HOL4 libraries for Sail are automatically translated from the
corresponding Lem libraries, and Lem’s simple type classes become HOL4 record types.
Figure 7.3(b) shows the HOL4 specification of add[s]/sub[s] instructions extracted from
the Lem in figure 7.3(a). Even for these simple instructions, the differences from the
L3-derived HOL4 in figure 7.1(c) (pg. 96) are considerable.

Some manual intervention is required for well-foundedness checking: Lem can
automatically generate simple well-foundedness proofs, but some Sail library functions
are well-founded for non-trivial reasons. These usually require arguments about integer
arithmetic. However, naïve definitions for pure and monadic while-looping constructs
cannot be proved well-founded. We redefined these functions correctly, deriving
theorems showing their behaviour is as originally intended.

We also corrected a minor HOL4 usability issue when working with this substantial
specification.3 We introduced a syntax for let-declarations within monads to enable clear
printing of definitions which mix monadic and pure assignments. The two equivalent
terms below show the original pretty-printing (left) and the new syntax (↞, right).
Removing unnecessary indentation and reducing do . . . od blocks permits interactive
inspection of the translated specification. Previously, cumulative indentation on each
pure assignment would push definitions off the screen.

do
y ← f x;
let z = g y in do

return z
od

od

do
y ← f x;
z ↞ g y;
return z

od

3https://github.com/HOL-Theorem-Prover/HOL/pull/825

https://github.com/HOL-Theorem-Prover/HOL/pull/825
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Chapter 8

Proofs of semantics preservation

Note the distinction between my goal of enabling compiler verification and the goals of
previous efforts built on ASL-derived specifications [Nienhuis et al. 2020; Reid 2017f; Reid
et al. 2016]: I use our HOL4 specification as a semantics for Arm machine code, and do
not consider (micro)architectural properties such as safety, security, or implementation
correctness. Instead, I am interested in proofs of semantics preservation, relating the
observable behaviour of Arm machine code programs with that of other programs (likely
in another language). This is exactly the class of proofs for which L3 was designed.

However, the detailed HOL4 specification we have generated from official ASL is
one of the largest and most complicated known ISA specifications in a theorem prover,
matched only by other specifications produced from official Arm ASL via Sail. In this
chapter, I develop techniques to tame it once and for all for use in proofs of semantics
preservation. In particular, I prove that an existing L3 specification simulates the
ASL-derived one. Verification efforts can then enjoy the ease-of-use of the former while
retaining the faithful modelling of the latter: future work can avoid navigating the
complexity of the ASL-derived specification, and other users of the L3 specification
benefit from its validation against official ASL.

More specifically, I describe the following. First, I modify the ASL-derived specific-
ation conservatively to adapt it to our goal (§ 8.1). Second, I inspect the result more
closely, focusing on: why it differs from other ISA specifications (§ 8.2); and how usable
its semantics of instructions are within the theorem prover, particularly compared to
L3’s (§ 8.3). Finally, I prove that the L3 specification simulates the ASL-derived one (§ 8.4).

8.1 Modifying the specification

We modify two aspects of the specification derived in § 7.3: its monad, and its modelling
of address translation.
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Monad. We remove the set-based non-determinism from the state/exception/non-
determinism monad (§ 7.3.2), preferring to use HOL4’s Hilbert choice operator (§ 1.2.1)
to express unknown values. This is more idiomatic, and streamlines interactive proof.
The new monad type is therefore:

(𝛼, 𝜀, 𝜎) M def
= 𝜎→ (𝛼, 𝜀) Result × 𝜎 (𝛼, 𝜀) Result ::= Value 𝛼 | Ex 𝜀

More precisely, set-based non-determinism is not compatible with in-logic evalu-
ation (§ 1.2.1), which we will rely on heavily later (§ 8.4.2). For example, without this
change an undefined 64-bit bit vector in Sail would be translated to a set of all 264 possible
64-bit bit vectors in HOL4, which is intractable to evaluate. To generate undefined values
for enumerated types, Sail libraries create such an undefined bit vector of sufficient width
and cast it to a natural number. This provides an index into a list which enumerates
all possible elements of the type. Undefined values for algebraic data types are then
constructed by composing undefined values of their constituent types. This too is more
cleanly and tractably represented as Hilbert choice. For example, an undefined 64-bit
bit vector is simply 𝜀(x : word64). T, and an undefined value of an enumerated type is
𝜀x. x ∈ {. . .} (i.e., any element from the set of possibilities).

We must be careful with manual changes in a high-fidelity specification. However,
our modifications are conservative: we change only the monad implementation in the
hand-written Lem libraries for Sail. This gives us confidence in their validity.

Address translation. We remove address translation, considering it to be a detail
orthogonal to many proofs of semantics preservation. This is in keeping with L3
specifications and other specifications modelling the semantics of machine code [Erbsen
et al. 2021; Sammler et al. 2022]: if hardware manufacturers ensure that their processors
correctly implement address translation, general-purpose software can assume that
physical memory has been abstracted correctly to virtual memory, and work only at the
level of the virtual address space. Software which must interact directly with address
translation (e.g., hypervisors) cannot rely on this assumption.

Using Sail’s user-splicing feature (§ 7.3.2), we stub out address translation functions
to express an identity mapping between virtual and physical memory. However, in
Armv8 AArch64 virtual addresses are 64-bit and physical addresses are up to 52-bit.
User-splicing cannot modify types, so we must manually modify the specification to
convert the type of physical addresses. Again, we must keep changes conservative to
maintain trust in the specification. We rely entirely on the Sail type-checker to help
identify a minimal set of required edits, which mostly affect type annotations.



8. proofs of semantics preservation 108

Table 8.1. Metrics for various architecture specification sizes.

(a) Metrics for the extraction of L3 and ASL specifications via the L3 and Sail ecosystems
respectively. HOL4 character counts are both as extracted (raw) and after pretty-printing to 80

columns. Timings taken using Intel® Xeon® E-2186G (3.8 GHz, 64 GB RAM).

Original specification L3 ASL

Source 0.053 4.2
Number of Sail - 7.4

non-whitespace Lem - 19.9
characters / 106 Raw HOL4 0.20 26.7

HOL4 0.070 12.2

Size / kLoC Source 2.4 168
Raw HOL4 8.5 488

Total time to extract 1 s ∼ 2 hrs
HOL4 build time < 30 s ∼ 3 hrs

(b) Metrics for other comparable specifications.

Architecture Language No. non-whitespace
characters / 106

RISC-V Sail 0.59
x86 ACL2 1.7

8.2 Inspecting the specification

Table 8.1 shows metrics taken throughout the extraction of L3 and ASL specifications to
HOL4, as well as similar measurements for other architectures. The difference here is
clear—to the best of my knowledge, the ASL-derived HOL4 specification is one of the
most complex, unwieldy specifications to be used in interactive proof. Why is this?

Why is the ASL specification so much larger than its peers? It covers more of its
intended ISA, modelling most modes/instruction sets, where other specifications tend to
formalise a particular mode of operation. For example, the L3 specification covers only
AArch64 mode, and also omits vector (SIMD) and floating-point instructions; in general,
L3 specifications model mostly user-level code, omitting most system registers/instruc-
tions. Until recently [Coglio and Goel 2018; Goel et al. 2017] the ACL2 specification of
x86 only covered 64-bit mode.

This is because ASL specifications have differing goals to their peers (§ 7.2.1): primarily
they provide documentation, focusing on thoroughness rather than simplicity. Other
efforts focus on verification: conciseness and usability are primary goals. For example,



8. proofs of semantics preservation 109

the ASL specification defines IEEE floating-point semantics from scratch to ensure
faithful behaviour, whereas other efforts outsource to libraries.

Why does extraction to HOL4 bloat the ASL specification? Representing sequential,
imperative code monadically (§ 7.3.2) adds considerable bloat due to conversion to
A-normal form and instrumentation with explicit monadic operations. Instead, the L3
specification is extracted using the ecosystem’s let-expression mode, keeping nearly all
definitions pure (looping constructs remain monadic).

Various translation artefacts (§ 7.3.2) are verbose, for example: succinct bit vector
slicing in Sail is often converted to masking; Sail’s undefined built-in primitive must be
implemented for each declared type; registers passed by reference in Sail require explicit
definitions in HOL4.

L3 couples tightly with prover back ends, using relatively simple types and HOL-
flavoured constructs to provide an extremely sophisticated syntactic sugar for higher-
order logic. Sail is more general-purpose, and not well-optimised for use with HOL4:
bit-vector built-ins must be realised in libraries, and these often re-implement HOL4
operations unnecessarily and non-idiomatically. Their definitions often involve many
auxiliary functions, and perform unusual conversions during operation. In particular,
they typically convert each input machine-word to a list of booleans, manipulate the list
to perform their operation, then convert back to an output machine-word. Often, this
re-implements a well-supported, idiomatic feature from HOL4 machine-word libraries.
A concrete example is given in figure 8.1 (§ 8.3, pg. 111).

Why are extraction and build times so long for the ASL pipeline? A significantly
larger specification takes longer to extract and build. However, the increase is not
proportional to size alone.

The ASL specification must be type-checked multiple times during extraction: in
ASL, in Sail, and in Lem. Monomorphisation is a complex process, and (along with
the lightweight dependent types in ASL/Sail) necessitates heavy use of Z3 to discharge
constraints during extraction.

Sail produces concrete HOL4 syntax via Lem, which must be parsed and type-checked
in HOL4. Instead, L3 relies on HOL4’s accessible metaprogramming: it produces
Standard ML which stitches together its definitions efficiently. Larger definitions built
from Sail’s scattered functions are particularly slow, including the decoder. By contrast,
L3’s decoder is manually defined to minimise its footprint; it tests opcodes in an order
which avoids ambiguities from overlapping opcode spaces, thereby also avoiding the
extra machinery required to handle SEE (§ 7.3.1).
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8.3 Working with the specification

We can now evaluate the practicality of our ASL-derived specification for interactive
proofs of semantics preservation. Unfortunately, there are some significant obstacles.

Opaqueness to inspection and interaction. The ASL-derived specification does not
implement an AST for Arm instructions, in contrast to the L3 specification. Users must
work directly with opcodes or manually define an AST.

Explicit monadic operations obfuscate high-level semantics. These are awkward
and tedious in interactive proofs, which must step over each monadic operation. L3’s
let-expression mode mostly removes monadic sequencing instead.

Monolithic HOL4 functions coalesced from ASL’s scattered functions are unwieldy,
e.g., the 23 kLoC decoding/execution function DecodeA64 (for which each instruction
implements a clause). Investigating and interacting with the semantics of a particular
instruction is therefore challenging.

ASL specifications and Sail libraries use many auxiliary functions and data manipu-
lations that are not idiomatic in HOL4: many steps of definition expansion are required
to inspect or use intended semantics.

Opaqueness to automated evaluation. Non-idiomatic bit vector operations have poor
evaluation support in HOL4, often re-implementing functionality in libraries shipped
with HOL4. Many operations even convert machine-word operands to bit-lists, perform
operations on bit-lists, and convert back. Permeative bookkeeping of these list lengths
requires automated discharging of necessary preconditions; by contrast, type-backed
widths require no such reasoning. Integers are used throughout even for always-positive
constants, despite HOL4’s better support for natural number reasoning. I have already
mentioned that HOL4 cannot derive various integer-based well-foundedness proofs
automatically (§ 7.3.3).

Consider the L3 (left) and ASL-derived (right) HOL4 definitions in figure 8.1, which
determine the index of the highest set bit of input bit vector x. The L3 definition uses
HOL4 library definitions to convert the base-2 logarithm of the input word to an integer
(w2i). The ASL-derived definition is more computational: it tests each bit from high
to low, returning early if any is set. However, this intended definition is obfuscated:
the early return necessitates embedding within the Sail monad and use of early-return
monadic operations (catch_early_returnS and early_returnS); explicit monadic operations
are used for looping and sequencing (made more palatable here by do-notation); integer
loop variables are used over natural numbers (n2i casts from natural to integer); custom
bit vector operations from Sail libraries are used (vec_of_bits and access_vec_dec). The
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HighestSetBitL3 x def
=

if x = 0𝑤 then −1
else w2i (word_log2 x)

HighestSetBitASL x def
=

catch_early_returnS
(let

lower = 0;
upper = n2i (word_len x) − 1

in
do

foreachS (index_list upper lower (−1)) ()
(𝜆 i unit_var.

if vec_of_bits [access_vec_dec x i] = 1𝑤 then
early_returnS i

else returnS ());
returnS (−1)

od)

Figure 8.1. L3 and ASL-derived HOL4 definitions for determining highest set bits.

definitions of these last operations involve a large number of auxiliary functions: they
convert x to a list of booleans, access the boolean at index i, and use it to create a 1-bit
bit vector. This re-implements HOL4’s well-supported bit vector access operation. This
small example exemplifies the complexity which pervades the ASL-derived specification.
We have already seen an ASL-derived HOL4 specification of the execution of a simple
instruction (figure 7.3(b), pg. 104).

8.4 Simulation proofs

In this section, I demonstrate an approach to managing the complexity of the ASL-derived,
modified specification from § 8.1. The approach is to tame it using a once-and-for-
all proof of simulation, abstracting it interactively to a more theorem-prover-friendly
specification. I choose the existing Armv8 L3 specification as the abstraction target,
rigorously validating it for the first time and so improving trust in the results of its other
users. The results in this section are decoupled from any particular application, and so
can be reused by future verification efforts.

8.4.1 Simulation relation

Definition 8.1 expresses our simulation relation, l3_models_asl, a predicate on the AST
for instructions defined by the L3 specification. The instruction should successfully
encode (using the L3-specified Encode) to produce a 32-bit opcode. Given L3 and ASL-
derived machine states related by state_rel, if the L3 specification can decode and run
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Definition 8.1. Simulation relation between L3 and ASL-derived specifications.

l3_models_asl opcode def
=

Decode opcode ≠ Unallocated ∧
∀ l3 asl l3′.

state_rel l3 asl ∧ asl_sys_regs_ok asl ∧ Run (Decode opcode) l3 = l3′ ∧
l3′.exception = NoException⇒
∃ v asl′.

ExecA64 opcode asl = (Value v,asl′) ∧ state_rel l3′ asl′ ∧
asl_sys_regs_ok asl′

l3_models_asl_instr instr def
=

∃ opcode. Encode instr = ARM8 opcode ∧ l3_models_asl opcode

(Run (Decode opcode)) the opcode without failure, the ASL-derived specification should
also run (ExecA64) it successfully, both producing resultant states that remain related
by state_rel. In addition, the predicate asl_sys_regs_ok should hold of the ASL-derived
state throughout. Intuitively, the relation specifies the following diagram:

l3 l3′

asl asl′
state_rel

Run (Decode opcode)

state_rel

ExecA64 opcode

Note that we rely on L3 machinery: its AST for instructions and its encoder. These are
orthogonal to the semantics of instructions, but use of an AST is well-suited to interactive
proof and makes it simpler to carve out classes of opcodes. I have already noted that the
ASL-derived specification does not provide such an AST or encoder.

The state equality relation state_rel is effectively a simple inclusion: the ASL-derived
specification models strictly more registers and processor state than the L3 one, so
state_rel asserts that the specifications agree on the parts modelled by both. I omit the full
definition, which is verbose due to superficial differences between the two specifications.
In particular, L3 machine states (l3) are concise records, with clean access to registers,
e.g., l3.PC is the program counter. Instead, ASL-derived states (asl) group registers
together by their types, e.g., asl.regstate.bitvector_64_dec_reg of type string → word64
models all simple 64-bit system registers. The sheer number of registers forces this
unusual approach: HOL4 struggles to cope with very large records in which each
register is declared separately, so they must be grouped. Register references (§ 7.3.2)
simplify indexing a particular register, for example PC_ref.read_from asl.regstate reads
the program counter. This is equivalent to asl.regstate.bitvector_64_dec_reg “_PC”.
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Subtleties

Versioning. The L3 specification models Armv8.0, whereas the ASL-derived specifica-
tion models Armv8.6. Though this is a “minor” version difference, there are observable
effects, e.g., certain system control registers are 32-bit in L3 but 64-bit in ASL. In Armv8.0,
these registers were 64-bit with their upper 32 bits reserved, so only their lower 32 bits
required modelling. However, ASL faithfully models all 64 bits regardless.

System registers. The predicate asl_sys_regs_ok is necessary as L3 specifications model
mostly user-level operation, omitting most system registers. We fix 10 bits of these
registers and clear one entirely in the ASL-derived specification to ensure it models a
processor in a similar mode of operation:

Specified bit(s) Purpose

pstate.nrw clear Using AArch64 mode
scr_el3[0] set EL0-2 are non-secure
scr_el3[10] set EL0-2 are not AArch32
scr_el3[18] clear Disable secure EL2
hcr_el2[31] set EL1 is AArch64
hcr_el2[34] clear Disable feat_vhe

tcr_el1[51-52] clear feat_pauth flag
tcr_el{2,3}[29] clear feat_pauth flag

highest_el_aarch32 clear EL3 is not AArch32
cntcontrolbase clear Generic timer control frame

The aim is to disable optional features not modelled in L3. The Arm Architecture
Reference Manual [Arm Limited 2020] provides a full account of these features. Note that
four of these bits are in the tcr_el{1,2,3} registers which are also modelled in L3. A feature
(feat_pauth) implementing pointer authentication codes (PACs) was made compulsory
in Armv8.3 onward, supporting authentication of addresses stored in registers before
targeting them for a branch or load. Fixing these bits in the Armv8.6 modelled by ASL
aligns behaviour more to the Armv8.0 modelled by L3, by ensuring the feature is applied
uniformly to data and instruction accesses.

Memory and registers. The L3 specification represents memory cleanly as a total
function from addresses to bytes (word64 → word8). However, the ASL-derived
specification models memory as a finite mapping from natural numbers to trit-lists
(num ↦→ trit list), each intended to represent a byte. It also models per-address validity
tags (num ↦→ trit). We impose restrictions on ASL-derived memory to ensure we can
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equate it to L3 memory: its domain must be exactly the natural numbers representable
by 64-bit words; its range must contain only bit-lists (i.e., no “unknown” trits) of length 8;
all addresses must have a valid tag.

To model Arm’s 31 general-purpose registers and zero register, the L3 specification
uses a total mapping from 5-bit words (word5 → word64). The ASL specification instead
uses a list of registers (word64 list). To access the register 𝑛, it takes the 𝑛th index of the
list. We must require the list to have length of exactly 32.

8.4.2 Proving the simulation

Establishing simulation for a particular instruction effectively requires execution of the
instruction on both specifications. We leverage pre-existing automation to execute the L3
specification effectively. However, the difficulties detailed in § 8.3 complicate execution
of the ASL-derived specification.

We adopt a partial, symbolic evaluation strategy: we use HOL4’s customisable
in-logic evaluation library (§ 1.2.1) to bypass the large, monolithic decoding machinery
within ExecA64. This is possible because decoding tests only the known, concrete upper
bits of opcodes, i.e., those that distinguish it from other classes of opcode. We implement
lightweight automation to direct the in-logic evaluation; once this has sufficiently
narrowed down the semantics of the given instruction, we proceed by interactive
proof. More precisely, our automation mostly bypasses HOL4 specifications derived
from the __encoding directives mentioned in figure 7.1(a) (pg. 96). Then, interactive
proof relates L3- and ASL-derived HOL4 specifications such as the simple examples in
figure 7.1(c) (pg. 96) and figure 7.3(b) (pg. 104) respectively.

In interactive proof, we must minimise the complexity that the ASL-derived specific-
ation introduces into our goal. We use the L3 specification heavily to provide abstract
representations of auxiliary functions, advancing the proof of simulation without un-
folding complex ASL-derived definitions. For example, we prove the lemmas below for
HighestSetBit from figure 8.1 (pg. 111), and AddWithCarry found in figure 7.1(c) (pg. 96)
and figure 7.3(b) (pg. 104).

⊢ HighestSetBitASL w = returnS (HighestSetBitL3 w)

⊢ AddWithCarryASL x y carry = AddWithCarryL3 (x,y,carry)

A notable sub-proof relates the L3 and ASL-derived implementations of DecodeBitMasks,
used in decoding to resolve immediate fields. Its 90 LoC ASL definition is obfuscated
by its optimised implementation, but a comment block asserts an equivalent 7 LoC
version. The L3 specification uses the shorter definition, so we must prove the asserted
equivalence: we split up the large function into more manageable chunks, proving
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manually-defined specifications for each chunk by brute force enumeration of inputs.
The resulting lemma is shown below.

⊢ DecodeBitMasksL3 (n,s,r,b) = Some res⇒ DecodeBitMasksASL 64 n s r b = returnS res

We instruct HOL4’s rewriting engine to perform a variety of automatic simplifica-
tions. We prove monad laws to enable automatic reassociation of bindS operations and
removal of returnS operations, avoiding repeated manual reassociation and case splits
on successful/exceptional return values. Unfolding simple but pervasive definitions
(e.g., various auxiliary bit vector operations, definitions of Arm’s exception levels, etc.)
reduces their repeated manual unfolding too.

In total, we prove l3_models_asl (definition 8.1, pg. 112) for the AArch64 instruction
classes below, requiring 7.5 kLoC of proof and 0.5 kLoC of simple automation (∼40 mins
to build, limited by in-logic evaluation). Our reliance on the existing L3 specification
keeps the proofs tractable, and no unexpected discrepancies were found in its semantics
or encoder (we do encounter a known issue, see § 10.2.3). All of our definitions and
proofs thus far are self-contained, and not tied to any particular usage of our ASL-derived
specification. To aid reuse in future work, they have been integrated into the HOL4
public repository (§ 1.1.1).

Instruction class description Assembly shorthands

move wide operations movk, movn, movz
bit field moves bfm, sbfm, ubfm

logical operations*† and[s], bic[s], eon, eor, orn, orr
addition/subtraction*† add[s], sub[s]

addition/subtraction with carry adc[s], sbc[s]
division sdiv, udiv

multiply with addition/subtraction madd, msub
multiply high smulh, umulh

conditional compare* ccmn, ccmp
conditional select csel, csinc, csinv, csneg

branch immediate (call/jump) b, bl
conditional branches b.cond

branch register (jump) br
register extract extr

address calculation adr, adrp
byte/register loads/stores*‡ ld[u]r, ld[u]r[s]b, st[u]r, st[u]rb

*For immediate operands.
†For shifted register operands.
‡Scaled 12-bit unsigned immediate offset and unscaled 9-bit signed immediate offset addressing modes.

https://github.com/HOL-Theorem-Prover/HOL/pull/981
https://github.com/HOL-Theorem-Prover/HOL/pull/981
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Chapter 9

Compiler correctness

In this chapter, I use the simulation proofs of § 8.4 to re-derive correctness of CakeML’s
compilation to Armv8 with significantly increased trust. I believe this is the first compiler
correctness result with respect to an official mainstream ISA specification. First, I review
CakeML’s use of unofficial L3 specifications to verify compilation to multiple architectures
(§ 9.1). Then, I show how to derive the new compiler correctness result, which targets
our ASL-derived specification (§ 9.2). Later in this dissertation, I will derive a similar
correctness result for PureCake (pg. 130).

9.1 Target correctness proofs in CakeML

CakeML targets x86-64, Armv7, Armv8 (AArch64), RISC-V, MIPS, and Silver (a custom
ISA for a verified processor [Lööw et al. 2019]), proving compiler correctness with respect
to specifications for each. These are all L3-derived, but we are concerned with Armv8.

Both the compiler and its proofs are carefully structured to remain as target-agnostic
as possible, reducing the implementation burden and proof obligation of supporting a
new target. The following design decisions were made [Fox et al. 2017].

Generic assembly and assembly configurations. The final intermediate language
of the CakeML compiler is LabLang, a target-neutral, labelled assembly language. A
LabLang program is a series of sections, each composed of lines. A line is either a label
or an Asm generic assembly instruction. The idea is that each Asm instruction can be
encoded directly in each target language supported by CakeML. This necessitates e.g.,
parametric machine-word widths to ensure support for differing targets. The type of an
Asm instruction with width 𝛼 is 𝛼 asm.

However, the reality is not so straightforward: architectures differ considerably in
the particular assembly features they support. Therefore, Asm is carefully designed to
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trade off expressivity and simplicity; for example, it prefers the more widely supported
compare/jump instructions over status registers, though these are idiomatic for certain
architectures. The language is further parametrised by an assembly configuration (aconf :
𝛼 asm_config) which encapsulates the set of valid features available for a given target.
For example, each assembly configuration aconf contains the following components:

Component Purpose

aconf .encode : 𝛼 asm → word8 list instruction encoder
aconf .big_endian endianness

aconf .code_alignment instruction address alignment
aconf .link_reg optional saved program counter for calls

aconf .avoid_regs special registers to avoid
aconf .reg_count no. of general-purpose registers

aconf .two_reg_arith two-register arithmetic only (e.g., x86-64)
aconf .valid_imm valid immediate predicate
aconf .addr_offset min/max address offsets for loads/stores
aconf .jump_offset min/max jump offsets

Compiler configurations. CakeML’s compiler implementation is parametrised by
another target-specific configuration record, known as a compiler configuration (cconf ).
This configures target-specific aspects of CakeML’s various back end optimisations,
including defining supported operations, specifying bit widths and padding, and a
mapping from CakeML’s registers to target registers. Each compiler configuration record
also contains an assembly configuration, cconf .config.

The full details are not relevant for our purposes; suffice it to say that compiling to a
new target requires definition of an appropriate compiler configuration (and therefore
an assembly configuration). This ensures that the compiler generates valid code for the
target. Defining a new encoder is the most involved step, but Asm’s design permits
relatively simple mappings into all of its target assemblies.

Generic machine semantics. A generic machine semantics (semanticsM) is specified
in the functional big-step style (§ 1.2.2). It is parametrised by FFI oracle Δ and a
machine state (machine), containing another kind of target-specific record known as a
machine configuration (machine.mconf). Each machine configuration mconf contains the
components below (where 𝛼 is the machine-word width, 𝜎 the type of processor state,
and 𝜋 a type representing a projection of processor state). I omit FFI-, cache-, and floating
point-specific configuration for brevity; they are not relevant for our purposes.
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Component Purpose

mconf .target.next : 𝜎 → 𝜎 next-step function
mconf .target.get_pc : 𝜎 → 𝛼 word get program counter

mconf .target.get_reg : 𝜎 → num → 𝛼 word get register value
mconf .target.get_byte : 𝜎 → 𝛼 word → word8 get byte from memory

mconf .next_interfer : num → 𝜎 → 𝜎 interference oracle
mconf .target.state_ok : 𝜎 → bool valid state predicate

mconf .target.proj : (𝛼 word → bool) → 𝜎 → 𝜋 state projection

mconf .callee_saved_regs : num list callee-preserved registers
mconf .prog_addresses : 𝛼 word → bool set of instruction addresses

mconf .halt_pc : 𝛼 word program exit PC
mconf .target.config : 𝛼 asm_config assembly configuration

Inclusion of the next-step function (mconf .target.next) and the accessors of registers,
the program counter, and memory (mconf .target.get_{reg,pc,byte}) permits generic spe-
cification of machine semantics for all targets at once: the semantics can step through
successive machine states and refer to, e.g., the program counter without any knowledge
of how processor state is specified. I refer to the sub-record mconf .target as a target
configuration (tconf ).

The generic semantics also models interference from the execution environment
by allowing the environment to change a subset of target state almost arbitrarily
between instructions and on FFI calls. This is specified using interference oracles, such
as mconf .next_interfer. Interference is subject to some conditions: it must preserve
both a well-formedness predicate on target state (mconf .target.state_ok) and a projection
of processor state (mconf .target.proj) exactly. The projection (of type 𝜋) is effectively
the subset of target state which is left unmodified (or modified then restored) by the
surrounding execution environment, i.e., mconf .target.proj is always the same both before
and after external interference. Note that projections are taken with respect to a memory
domain, i.e., a set of valid memory addresses (of type 𝛼 word → bool). The semantics of
LabLang requires all memory accesses to fall within this domain, which can therefore be
considered the set of addresses owned by the LabLang program.

Other fields specify: calling convention information (mconf .callee_saved_regs); the
set of instruction addresses (mconf .prog_addresses); the program counter for successful
program exit (mconf .halt_pc); and the assembly configuration (mconf .target.config).

Compiler proofs. The use of a generic machine semantics allows much of compiler
correctness to be proved once and for all, reducing duplication across multiple targets.
All target-specific obligations are factored out into three preconditions:
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Precondition Purpose

backend_config_ok cconf compiler configuration well-formedness
mc_init_ok cconf mconf relation between compiler/machine configurations

mc_conf_ok mconf machine configuration well-formedness

These mostly encapsulate natural well-formedness restrictions and correspondences
between the various configuration records. We can see now that target_configs_ok (the-
orem 1.1, pg. 9) is defined in terms of these three:

target_configs_ok cconf machine def
= backend_config_ok cconf ∧

mc_init_ok cconf machine.mconf ∧
mc_conf_ok machine.mconf

When proving target_configs_ok cconf mconf for a given compiler and target config-
uration, the key proof obligation is encoder_correct mconf .target, necessary to establish
mc_conf_ok mconf .

Definition 9.1. encoder_correct.

encoder_correct tconf def
=

target_ok tconf ∧
∀ asm1 instr asm2 trgt.

step_asm tconf .config instr asm1 = Some asm2 ∧ target_state_rel tconf asm1 trgt⇒
∃ n. ∀ 𝜄.

interference_ok 𝜄 (tconf .proj asm1.mem_domain) ⇒
target_state_rel_after_n n (tconf ,𝜄,instr) (asm1,asm2,trgt)

For encoder_correct to hold of some target configuration tconf , the tconf must first satisfy
target_ok. The remainder of the definition is quite verbose (particularly the definition
of target_state_rel_after_n), and obscures the key intuition: given an Asm state asm1,
an Asm instruction instr which will successfully execute (step_asm) to produce state
asm2, any equivalent (target_state_rel) target state trgt with the encoded Asm instruction
in memory must be able to execute (tconf .next) some number of steps 𝑛 successfully,
producing some final state equivalent to asm2 (target_state_rel_after_n). The definition of
target_state_rel_after_n allows for arbitrary intervening interference (𝜄) between execution
steps, as long as the interference preserves tconf .proj asm1.mem_domain (this is enforced
by interference_ok). Existential quantification over 𝑛 is necessary because single Asm
instructions are often encoded as a sequence of target opcodes. Each tconf.next and
interference step must also preserve tconf .state_ok and memory addresses which either
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contain instructions or are not within asm1.mem_domain. Overall, this corresponds to
the diagram below, where I have abbreviated next def

= tconf .next.

asm1 asm2

trgt0 trgt1 trgt′1 · · · trgt𝑛 trgt′𝑛

step_asm mconf .target.config instr

target_state_rel target_state_rel

next 𝜄1 next next 𝜄𝑛

The target_ok predicate imposes further well-formedness restrictions on encoding
and projection. In particular, tconf .proj should essentially identify a target state: if two
states agree on tconf .proj for some memory domain, they must also agree on program
counters and all memory addresses within that memory domain. Each should further
be well-formed (tconf .state_ok) iff the other is, and should be equivalent to the same set
of Asm states (according to target_state_rel).

At its heart, encoder_correct specifies a simulation relation. The natural way to prove
this is by symbolic evaluation of instruction semantics on Asm and target state machines
side-by-side. Therefore, proofs rely heavily on L3-enabled automation to repeatedly apply
tconf .next and re-establish tconf .state_ok after each step and its associated interference.

9.2 Lifting simulation to compiler correctness

The CakeML compiler already targets Armv8, so we do not need to define a new compiler
configuration or derive backend_config_ok. Therefore, to lift our simulation results
(§ 8.4) to a top-level compiler correctness theorem, we must define a suitable machine
configuration and establish mc_init_ok/mc_conf_ok.

Defining the machine configuration is mostly boilerplate: most definitions and proofs
essentially mirror the existing ones for the L3 specification. One key difference is that the
new machine configuration must incorporate asl_sys_regs_ok (definition 8.1, pg. 112)
into mconf .target.state_ok, and extend the projection mconf .target.proj to ensure that these
registers are preserved during interference too. Most other differences are much more
minor: memory and registers must also be well-formed (§ 8.4). However, we must also
define a next-step function (mconf .target.next). Though the ASL specification provides a
function TopLevel, this covers unwanted extraneous details, such as processor interrupts
and memory-mapped devices. Instead we define NextASL (definition 9.2), essentially
TopLevel with the complexity stripped away. NextASL clears the branch-taken flag, reads
the program counter, fetches the next opcode, and executes the opcode. The program
counter is then updated only if no branch has been taken.

As discussed, the key proof obligation is encoder_correct (definition 9.1). We first
prove theorem 9.3: l3_models_asl (definition 8.1, pg. 112) holds for any encodable Armv8



9. compiler correctness 121

Definition 9.2. NextASL, a next-step function for the ASL-derived specification.

NextASL def
=

do
write_regS BranchTaken_ref F;
pc ← PC_read ();
instr ← Mem_read0 pc 4 AccType_IFETCH;
ExecA64 instr;
branch_taken ← read_regS BranchTaken_ref;
if branch_taken then returnS () else do pc ← PC_read (); PC_set (pc + 4𝑤) od

od

Theorem 9.3. l3_models_asl for CakeML-generated instructions.

⊢mem instr (asm_to_arm8 prog) ∧ (∀ s. Encode instr ≠ BadCode s) ⇒
l3_models_asl_instr instr

instruction produced by CakeML’s compilation via Asm. Ideally, we would be able to
reuse the encoder_correct result proved for the L3 specification directly, by deriving the
following unproven (⊬) theorem statement:

⊬ encoder_correct l3_mconf .target⇒ encoder_correct asl_mconf .target

However, we are foiled by the interference from the surrounding execution environment.
The definition of encoder_correct (definition 9.1, pg. 119) means we would require once
and for all a transformation from interference with ASL-derived target states (satisfying
interference_ok) to interference with L3 target states, such that the transformation
preserves state_rel (§ 8.4.1, to allow use of the simulation proofs of § 8.4). In other words,
we must derive the following result:

⊬ interference_ok 𝜄 (asl_tconf .proj mem_domain) ⇒
∃ 𝜄′. interference_ok 𝜄′ (l3_tconf .proj mem_domain) ∧
∀ l3 asl. state_rel l3 asl⇒ ∀n. state_rel (𝜄′ n l3) (𝜄 n asl)

We cannot express this transformation: interference on ASL-derived specifications has a
larger input space than that on L3 specifications, due to processor state not modelled in
L3. The best we can do is transform interference per-state in lemma 9.4. Fortunately, this
is sufficient to reuse our simulation proofs and avoid further symbolic evaluation with
respect to the ASL-derived specification.

Proof of encoder_correct for the ASL-derived specification. From definition 9.1 (pg. 119), we
have step_asm arm8_aconf instr asm1 = Some asm2 and target_state_rel asl_tconf asm1 asl,
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Lemma 9.4. Transforming interference.

⊢ interference_ok 𝜄 (asl_tconf .proj mem_domain) ∧ state_rel l3 asl⇒
∃ 𝜄′. interference_ok 𝜄′ (l3_tconf .proj mem_domain) ∧
∀n. state_rel (𝜄′ n l3) (𝜄 n asl)

where instr is an Asm instruction produced by the CakeML compiler and asl is our initial
ASL-derived state. We must alternately apply NextASL and some interference 𝜄 to
produce a final state asl′𝑛 which satisfies target_state_rel asl_tconf asm2 asl′𝑛 . Choose 𝑛

to be the length of the Armv8 encoding of instr.
Let l3 be the L3 state which subsets asl, so then state_rel l3 asl. Now leverage

existing automation for the L3 specification to symbolically execute the first instruction
of the Armv8 encoding on l3 to produce l31. Use theorem 9.3 (pg. 121) to derive the
corresponding asl1 for which state_rel l31 asl1.

Now asl1 undergoes interference to produce asl′1. It is not necessarily the case
that state_rel l31 asl′1. However, we can use lemma 9.4 to interfere with l31 in a
way which satisfies interference_ok, producing some l3′1 for which we can re-establish
state_rel l3′1 asl′1.

We repeat this process a total of 𝑛 times, reaching l3′𝑛 , for which we must have
target_state_rel l3_tconf asm2 l3′𝑛 . We can then straightforwardly derive the correspond-
ing result for asl′𝑛 . □

Overall, we produce theorem 9.5, our top-level compiler correctness proof. This is
a specialised version of CakeML’s generic compiler correctness theorem (theorem 1.1,
pg. 9), where we have instantiated the compiler configuration to arm8_compiler_config
and discharged the target_configs_ok precondition by showing it is implied by the asl_-
machine_config_ok predicate. The latter carves out a set of all possible valid ASL-derived
machine configurations. It mimics an existing predicate defined for the L3 Armv8
semantics, but enforces the new mconf .target instead.

Theorem 9.5. CakeML compiler correctness for ASL-derived Armv8.

⊢ asl_machine_config_ok machine.mconf ∧
semantics Δ prog ≠ Terminate Error _ ∧
compile arm8_compiler_config prog = Some code ∧
code_in_memory arm8_compiler_config code machine
⇒ semanticsM Δ machine ∈ extend_with_oom (semantics Δ prog)
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Chapter 10

Discussion

I have now showcased a compiler correctness proof which is backed by an official
specification of an Arm ISA. The proof is made tractable by leveraging an existing L3
specification to abstract away complexity.

This approach rigorously validates the L3 specification, finding no new bugs. Most of
the work is decoupled from CakeML, strengthening assurances in other projects which
rely on the L3 specification of Armv8 and permitting reuse in future verification efforts.
Usage of the Sail ecosystem demonstrates a novel application to proofs of semantics
preservation, and further validates the Sail extraction process.

In this chapter I discuss the contributions presented in this part, in particular: high-
level questions raised by them (§ 10.1), where they fit into the wider research landscape
(§ 10.2), and how future work could build on them (§ 10.3).

10.1 High-level questions

This work raises some natural questions:

• What can be said about the trustworthiness of our results, particularly in comparison
to those built on the L3 specification? (§ 10.1.1)

• Why did we find no new bugs in the L3 specification? (§ 10.1.2)

• Could we better adapt our specification for theorem proving, so avoiding the use
of L3 as an intermediary? (§ 10.1.3)

10.1.1 Trustworthiness of our specifications

The ASL specification cannot cover all aspects of its ISA, instead providing a working
reference. When considering more complex features, such as concurrency and interrupts,
it remains an abstraction of the authoritative detail of the Arm Reference Manual.
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However, even if a complete, machine-readable specification existed, proofs of semantics
preservation with respect to it would be intractable without the abstractions. The ASL
specifications and our work are a best-effort, modelling as much detail as currently
feasible. Other proof goals (such as architecture security properties) may require different
levels of detail.

Our root of trust is the extensive Arm-internal evaluation of the ASL specification,
but extraction via Sail could introduce unintended semantic changes. Validating the
generated HOL4 against Arm test suites or real hardware could improve trust (Sail’s C
back end has been tested in this way), but proving that the extraction preserves semantics
is better still. This would be a significant undertaking, and require formal models of (at
least) ASL and Sail. There has been some work into such models for both ASL (from
personal communication) and Sail [Armstrong et al. 2018b]. Note that both Sail and Lem
have been validated through heavy usage. For example, Sail-extracted ASL models have
successfully been used to simulate a Linux boot, and the Lem ecosystem is well-exercised.
However, Sail’s HOL4 back end has received limited prior usage, so our work better
validates this pathway too.

Our simulation proofs (§ 8.4) allow each specification to improve trust in the other.
The L3 and ASL-derived specifications differ in their derivations considerably, yet are
formally connected by our work. Therefore, any bugs found in one must be found in
the other, and the low likelihood of this strengthens assurances in both. Previously,
the L3 Armv8 specification had not been rigorously validated due to the scarcity of
Armv8 hardware when it was written. By contrast, the L3 Armv7 specification was
tested extensively against real hardware.

Even so, we strengthen trust in a single L3 specification, and a single extraction
pathway via Sail. There are many such specifications that can be generated, via different
extraction options, versioning differences, choices in manual modification, and so on.

10.1.2 Absence of bugs

We discovered no new bugs in the L3 specification semantics or encoder (we encountered
one known issue, see § 10.2.3), despite the differing provenances of the L3 and ASL-
derived specifications. This validates the approach of formalising a specification by
using a DSL (L3) which can closely mirror it. However, the absence of bugs is surprising
given that the ASL-derived specification covers implementation-defined behaviour and
architecturally unknown values.

A partial explanation is our restricted domain of proofs of semantics preservation:
we verify general-purpose instructions targeted by compilers, which avoid ambiguity
to ensure portability. As a verified compiler, CakeML targets an even smaller subset of
instructions to reduce proof overhead.
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Removal of address translation and interrupts (§§ 8.1 and 8.4 respectively) further
reduces ambiguity significantly. We also do not tackle exception-handling, assuming
that instructions complete execution without failure in the L3 specification (definition 8.1,
pg. 111). This precondition holds for all instructions generated by the CakeML compiler.

Furthermore, Arm intentionally reduced underspecification in Armv8 (compared
to Armv7). For example: in Armv7 the program counter is a general-purpose register
(r15) which can be modified unexpectedly by programmers; in Armv8 there is no direct
access to the program counter. Architecturally unknown values are also mostly used as
placeholders for variables which are declared and only later initialised.

10.1.3 The need for L3

We build our results on existing tools: an ASL specification and the Sail ecosystem.
Neither is designed for interactive theorem proving, so we use a purpose-built L3
specification as a stepping stone in proof. Instead, could we obviate the need for this
indirection by better adapting the tools to our domain?

One approach is to change the official ASL specification, though this would require
support from Arm. Stylistic refactoring could reduce overly imperative code (e.g.,
figure 8.1, pg. 111). Logical refactoring has recently streamlined address translation,
and could be applied to other parts of the specification. Forbidding early-return
statements could reduce embedding of otherwise pure functions into the monad, but
this is a significant language change. Alternatively ASL-to-ASL transformations before
translation to Sail could achieve similar effects, without compromising our root of trust:
the resultant ASL can be subjected to the Arm-internal test suite. Semantics-preserving
transformations are already used in Arm to produce model-checking-friendly Verilog
(from personal communication).

Another approach is to strengthen Sail’s extraction to HOL4, taking inspiration from
L3. Streamlining of Sail libraries for HOL4 is a first step. Extraction would also need to
produce an AST for instructions. The challenge here is reproducing L3’s ease of use: its
AST is handcrafted for theorem proving (i.e., split into instruction classes for convenience
and to avoid scaling issues with HOL4 types). However, Sail’s extraction must be
automatic and target-agnostic. Design choices made here will suit different domains,
for example the AST could mirror assembly syntax or reference manual structure. A
direct translation from ASL or Sail to HOL4 (cutting out Lem) could also streamline the
extraction process and more closely target HOL4, but this is a significant undertaking.

Direct proof without L3 would also require new proof automation. No next-step
libraries exist for the ASL-derived specification, but several have been painstakingly
handcrafted for various other specifications. Automatic generation of certified next-step
libraries using symbolic evaluation and symbolic execution [Campbell and Stark 2016]



10. discussion 126

is a promising approach. A key challenge will be navigating the large, monolithic
decoding/execution functions.

Though we have identified some promising avenues to verification without L3, none
provides a silver bullet and taken together they represent a significant body of work. As
industrial specifications of the scale of Armv8 become more prevalent, such engineering
issues will be critical.

10.2 Related work

In this section, I review prior work which is most relevant to this part. More general
work is described in § 1.3.

10.2.1 Applications of the Sail toolchain

Isla [Armstrong et al. 2021] is an SMT solver-based symbolic execution engine for Sail.
Given an opcode and constraints on processor state, it can produce instruction execution
traces which are much simpler than the original Sail. This echoes the next-step libraries
used with many L3 specifications (§ 7.2.3), which similarly prune irrelevant parts of the
specification using preconditions; next-step libraries are created once and for all in-logic
where Isla traces are generated on-the-fly using an external SMT solver. Islaris [Sammler
et al. 2022] formalises Isla-generated traces in Coq and builds a separation logic for
reasoning about their semantics, using automated proof search to simplify verification
efforts considerably. Our shared goal is to derive simplified machine code semantics from
the complex ASL-derived specifications, using the desired domain to constrain semantics
appropriately. Islaris’ domain is machine code verification so it relies on user constraints
and an external SMT solver on a per-opcode basis, effectively handling multiple ISAs
and system registers/instructions. However, use of external solvers reduces trust, and it
can be difficult to find sufficient constraints to narrow down semantics. Our domain of
semantics preservation instead allows us to abstract once and for all within the prover,
sacrificing some portability and system-level behaviour for greatly increased assurances.

Sail is integral in key security proofs with respect to Morello, an Arm implementation
of the Capability Hardware Enhanced RISC Instructions (CHERI) ISA [Bauereiss et al.
2022; Nienhuis et al. 2020]. CHERI extends conventional ISAs with new features enabling
memory protection, defending against many memory-based security exploits [Watson
et al. 2019, 2020]. The Isabelle/HOL proof (with some SMT solver oracles for bit vector
operations) is complex, requiring hours to build with considerable computing power.
For such security properties, monadic representation of specifications may be useful:
these proofs consider not just input-output behaviour, but also intervening steps and
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their memory accesses. In our case, these intervening steps obfuscate the high-level
semantics of the instruction.

10.2.2 Verified compilation to verified hardware

Verifying individual processor implementations can produce impressively powerful
end-to-end guarantees. Verified compilation to such a processor has a minimal trusted
computing base, compared to other targets which must trust ISA specifications and
processor implementations. However, their purpose-built specifications cannot approach
modern, mainstream processors in complexity or efficiency; our focus on ISAs (which
specify an envelope of behaviours to which processor implementations must adhere)
therefore sacrifices some trust for greater applicability to common processors. Just as
ISA verification relies on architecture specification languages, so too does hardware
specification rely on hardware description languages (HDLs).

CakeML targets the Silver ISA and its verified implementation [Lööw et al. 2019].
Proof-producing synthesis of Verilog (an HDL) circuits from HOL4 circuit functions [Lööw
and Myreen 2019] mirrors synthesis of CakeML from computable functions (§ 1.2.2),
and is formalised with respect to a deep embedding of Verilog syntax and semantics.
Guarantees can be further transported to netlists by another step of synthesis from
Verilog [Lööw 2021]. Running CakeML applications directly on the processor without an
intervening OS (bare metal) permits discharging of CakeML’s assumptions concerning the
behaviour of the external execution environment. Notably, the action of system calls and
their side-effects on processor state (e.g., preservation of CakeML’s calling convention)
no longer need to be asserted.

Choi et al. [2017] produce the Kami Coq library for specifying and verifying hardware
designs written in the style of the HDL Bluespec. Transliteration to Bluespec permits
automated unverified compilation to FPGAs and chip designs, though pairing with
the Kôika [Bourgeat et al. 2020] verified compiler for a subset of Bluespec could port
guarantees closer to these devices. A family of pipelined processors with coherent
caches is implemented and verified using Kami; one concretised instance of this family
implements a subset of RISC-V. Erbsen et al. [2021] build on this, verifying an application
on a realistic embedded stack by implementing a C-based language and verified compiler
targeting Kami’s RISC-V implementation. These works are part of the Bedrock project,
which prioritises clean, highly automated verification using modular interfaces and
realistic I/O over performance and usability.
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10.2.3 Validation of ISA specifications

The Provably Secure Execution Platforms for Embedded Systems (PROSPER) project
has created Scam-V [Nemati et al. 2020], an automatic validator for ISA specifications. It
searches for pairs of executions which behave identically according to the specification,
but are distinguishable on hardware via some observation. If such a pair exists, the
specification has failed to model an observable side-channel correctly.

Scam-V uncovered a bug in the L3 specification of Armv8: the compare and branch on
non-zero instruction (cbnz) incorrectly behaved like the compare and branch on zero in-
struction (cbz). We replicated this finding in a failed attempt to prove l3_models_asl (defin-
ition 8.1, pg. 112) for an unpatched cbnz. Furthermore, we have validated the corrected
specification by successfully establishing l3_models_asl. Note that our CakeML proofs
were unaffected: the CakeML compiler does not produce cbnz instructions.

10.2.4 Verification with respect to the Arm architecture

Official Arm ISA specifications have been used within Arm to establish architectural
properties below the ISA abstraction boundary. These efforts use automated techniques
(SMT solving and bounded model-checking) to suit their problem domain and their
setting in industry.

ISA-Formal [Reid 2016b; Reid et al. 2016] uses bounded model-checking to verify that
Arm ISA implementations adhere to their intended specification. The project translates
ASL specifications to reference Verilog implementations [Reid 2016c], comparing these
to the actual implementation using an off-the-shelf bounded model-checker. Failures are
output as counterexamples.

Secure-M [Reid 2017f] produces key security properties for the Arm M-class spe-
cification, using an automated SMT solver to verify they hold. It provides a more
rigorous alternative to code review and testing for architecture modifications, focusing
on whole-specification properties for continuous integration testing. There is also some
support for developer-stated assertion-checking. A future goal is to prove that successive
versions of specifications preserve necessary backwards-compatibility.

10.2.5 Other applications of L3

The seL4 [Klein et al. 2009, 2014] verified operating system microkernel uses a translation
validation [Sewell et al. 2013] phase to extend its guarantees to the binary on Armv7. In
particular, seL4’s C implementation is verified with respect to a C semantics specified in
Isabelle/HOL. To ensure this verification still holds for a compiled Armv7 binary, the
binary is decompiled to a HOL4 function using the L3 specification of Armv7. The HOL4
function is ported to Isabelle/HOL, and proved equivalent to the C source program via
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translation to a graph representation followed by SMT solving. Critically, decompilation
is automatic and proof-producing [Myreen et al. 2008]: each run produces a theorem
relating the semantics of the original binary to the extracted HOL4 function.

10.3 Future work

Removing the precondition to theorem 9.3 (pg. 121) is a clear next step. This could
be complicated by further incompatibilities between the L3 and ASL-derived specific-
ations, particularly their versioning differences (Armv8.0 vs. Armv8.6 respectively).
One mitigation is to upgrade the L3 specification to support Armv8.6, and to model
more system registers. The latter could further reduce the number of bits fixed by
asl_sys_regs_ok (§ 8.4).

Further afield, we could augment the L3 specification to model a greater subset
of the ISA. This is no small task, requiring close familiarity with both L3 and the
Arm Architecture Reference Manual [Arm Limited 2020]. AArch32 and floating point
instructions in particular are not currently modelled in L3 and so remain unsupported
by CakeML on Armv8. Connecting ASL’s custom floating point definitions with HOL4
libraries would be a significant challenge here. Fortunately, the simulation proofs can
help by uncovering any discrepancies between the specifications.

An L3 specification provides the semantics for Armv7 used for seL4’s translation
validation (§ 10.2.5). Applying the simulation proofs of § 8.4 to seL4 would significantly
strengthen this result. However, the versioning mismatch here is considerable: seL4
implementation and proofs would need need to be updated to target Armv8 first.

A more faithful account of address translation would improve trust in our work
and widen its applicability. This could take inspiration from the Sail developers, who
prove in Isabelle/HOL that address translation adheres to a hand-written specification
under certain conditions [Armstrong et al. 2019, §8]. Recent simplifications to Arm’s
ASL specification of address translation may help here.
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Conclusion

I have now presented two advancements in state of the art general-purpose, end-to-end
compiler verification: an end-to-end verified compiler for a purely functional, Haskell-like
language, and a formal connection between a realistic Armv8 instruction set semantics
and a compiler correctness result. Each advancement extends the guarantees of the
CakeML ecosystem outwards: PureCake lifts them to a Haskell-like language, reusing
CakeML as an unmodified component; and a realistic machine semantics reduces the
trust that they demand.

Composing theorem 5.6 (pg. 78) and theorem 9.5 (pg. 122) via theorem 5.3 (pg. 76)
fulfils the title of this dissertation: an end-to-end correctness theorem for the compilation
of a purely functional language to a realistic machine semantics.

⊢ compiler str = Some ast ∧
compile arm8_compiler_config ast = Some code ∧
asl_machine_config_ok machine.mconf ∧
code_in_memory arm8_compiler_config code machine
⇒ ∃ ce ns. frontend str = Some (ce, ns) ∧

ffi_convention ⊢ ⟦machine ⟧M prunes ⟦ exp_of ce ⟧

In this section, I will answer two questions. First, how much trust does this theorem
require? Second, how much were we constrained by CakeML?

Trust in the theorem

What remains in our TCB?
We must still trust the logic and implementation of HOL4, though this can be

mitigated somewhat using HOL4’s ability to generate independently verifiable proof
articles. Otherwise, most assumptions are inherited from CakeML, concerning isolation
provided by the surrounding execution environment. That is, code generated by
PureCake assumes that the operating system invisibly handles context switches, as if
the code were running directly on hardware. In particular, the program is initialised
correctly (code_in_memory) and the operating system respects a calling convention (i.e.,
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does not clobber registers unexpectedly). Like CakeML, PureCake also trusts the C glue
code implementing its FFI, and off-the-shelf linking which integrates the glue code into
its verified binary.

Even with the use of a realistic machine semantics, PureCake still assumes that
hardware implementations correctly adhere to ISA specifications, and that address
translation is seamless so virtual memory correctly abstracts physical memory. But
our Armv8 ISA specification offers a much-reduced TCB due to its derivation from a
near-complete official specification. The translation of Arm ASL into HOL4 and our
ensuing modifications still require some trust, but this is now measurable: a fixed
number of lines of code and manual modifications, as opposed to unknown trust in
human-written specifications which can at best be validated via testing. The only increase
in TCB is the addition of a few extra system registers which we assume will be preserved
by the operating system.

Usage of CakeML

We have built our work on CakeML—but does this limit its wider applicability?
Most of the techniques I have presented are orthogonal to CakeML, which serves

only as a research vehicle. The challenges of verifiably compiling a purely functional
language or taming an industrial instruction set specification are equally applicable when
working with any other verified compiler. However, PureCake’s implementation and
verification are streamlined because CakeML already compiles a functional language, and
using realistic semantics with CakeML is simpler because it already targets mainstream
hardware. Applying these techniques to a compiler for a lower-level language or one
which targets other hardware will require extra effort.

What about those techniques that are CakeML-specific—how do these constrain
our work? PureCake cannot implement features such as separate compilation without
support from CakeML. But it does make some considerably different design choices
without adverse effects: for example its semantics is based on interaction trees, which
need only be connected formally to CakeML’s trace-producing one. Most of our work on
realistic machine semantics remains independently reusable too.

However, both efforts have had to contend with CakeML’s model of I/O and the
surrounding execution environment. In particular, PureCake’s FFI model is mostly
inherited from CakeML, and it is non-trivial to use our realistic machine semantics
alongside CakeML’s modelling of environmental inference. Arguably, these are natural
consequences of verifying a component of a trusted system (the compiler) rather than
the whole system, and it is prohibitively difficult to verify entire systems which consist
of realistic components. We have to make assumptions about the parts we do not verify:
the TCB of any verified system will necessarily form part of its externally-presented
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proof interface. But these assumptions are not necessarily set in stone. CakeML models
its FFI essentially as uninterpreted function calls, permitting encoding of other FFI
models, including PureCake’s slightly higher-level one. Generalising the more concrete,
low-level aspects of CakeML’s model could simplify similar efforts in the future. CakeML
introduces environmental interference only in its lowest-level target semantics too,
suggesting that these assumptions can be modified without reworking the entire verified
stack. This could permit, for example, composition with a verified operating system
which guarantees exactly those properties that CakeML assumes about its surrounding
execution environment.
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