
Hrutvik Kanabar

Implementing and verifying a

compiler optimisation for CakeML

Computer Science Tripos – Part II

King’s College

May 18, 2018

1

2

Proforma

Name: Hrutvik Kanabar

College: King’s College

Project Title: Implementing and verifying a compiler

optimisation for CakeML

Examination: Computer Science Tripos – Part II, July 2018

Word Count: 119901

Project Originator: Dr. Magnus Myreen

Supervisors: Dr. Stephen Kell & Dr. Anthony Fox

Original Aims of the Project

To implement global dead code elimination optimisations in two intermediate languages

of the compiler for the open-source, functional language CakeML. These will eliminate un-

reachable or unnecessary code that can be removed without affecting observable behaviour

from FlatLang (the first intermediate language in the compilation pipeline) and Word-

Lang (the antepenultimate language). The WordLang optimisation should be proved

to preserve the semantics of any program using the interactive theorem-prover HOL4.

Lastly these optimisations should be integrated into the existing CakeML codebase, and

(for the FlatLang case) evaluated using demonstrations of reduced code size.

Work Completed

Three of four core success criteria were achieved outright: the optimisation was imple-

mented for FlatLang, both implemented and verified for WordLang, and demonstrated

to remove unused FlatLang code. The final criterion was achieved as far as possible: the

FlatLang optimisation is not part of the latest version of CakeML, but is a part of the

latest version that contains FlatLang (§ 2.2.1). It will be a part of the main compiler as

soon as FlatLang itself is.

An extension aim of the project was also achieved: the FlatLang optimisation was

proved correct.

1Calculated using texcount -quiet -merge -sub=chapter -sum <.tex file>.

3

Special Difficulties

Working on an active open-source project, and so coping with external timelines affecting

my own work (§ 2.2.1).

It was therefore not possible to achieve one of the success criteria: integrating the

optimisation for FlatLang into the latest version of the compiler. FlatLang itself is not

a part of this version, so the optimisation was instead integrated into the latest version

containing FlatLang.

An (achieved) success criterion was to demonstrate the effect of the optimisation in

FlatLang on example code. However, the test programs used for this would not build

until May 7, 20182.

2Commit URL: https://github.com/CakeML/cakeml/commit/52ebb2.

4

https://github.com/CakeML/cakeml/commit/52ebb2

Declaration

I, Hrutvik Kanabar of King’s College, being a candidate for Part II of the Computer

Science Tripos, hereby declare that this dissertation and the work described in it are my

own work, unaided except as may be specified below, and that the dissertation does not

contain material that has already been used to any substantial extent for a comparable

purpose.

Signed:

Date: May 18, 2018

5

6

Contents

1 Introduction 11

1.1 Optimising compilers . 11

1.1.1 Dead code elimination . 12

1.2 Compiler correctness . 12

1.2.1 Interactive theorem-provers . 12

1.2.2 CompCert . 14

1.3 CakeML . 14

1.4 Purpose of this project . 15

2 Preparation 17

2.1 HOL4 . 17

2.2 Starting point . 18

2.2.1 Unforeseen limitations of the starting point 19

2.3 Project planning and practice . 19

2.3.1 Plan of work . 19

2.3.2 Third-party tools . 21

2.3.3 Backups and version control . 21

3 Implementation 23

3.1 Sptrees . 23

3.1.1 The next-step function . 24

3.1.2 Basic principles of sptrees . 24

3.1.3 Implementation and well-formedness 25

3.1.4 Sptrees in this project . 26

3.2 Code analysis implementation . 27

3.2.1 Code analysis in WordLang . 28

3.2.2 Code analysis in FlatLang . 28

3.3 Reachability analysis . 30

3.3.1 Specification and reachability relations 30

3.3.2 Reachability implementation . 31

3.3.3 Reachability proofs . 32

4 Evaluation 37

4.1 Evaluation methods . 37

4.2 Proof of correctness . 37

7

4.2.1 Proofs of termination . 38

4.2.2 Proofs of semantic preservation in WordLang 38

4.2.3 Proofs of semantic preservation in FlatLang 43

4.3 Secondary evaluation . 47

4.4 Summary of results . 48

5 Conclusion 51

5.1 Summary of the work completed . 51

5.2 Improvements on the work completed . 52

5.3 Further work . 53

Bibliography 53

A Intermediate languages 57

A.1 WordLang . 57

A.1.1 Structure of a WordLang program 57

A.1.2 Semantics of WordLang . 58

A.2 FlatLang . 60

A.2.1 Structure of a FlatLang program 60

A.2.2 Semantics of FlatLang . 61

B HOL4 63

B.1 Basic principles of HOL . 63

B.2 Scripts and theories . 64

B.3 The goalstack and interactive proof . 65

B.3.1 Tactics . 65

B.3.2 Tacticals . 66

B.3.3 Conversions and rules . 67

B.4 Summary of HOL workflow . 67

C Results of code reduction evaluation in FlatLang 69

D Project Proposal 71

8

List of Figures

3.1 A diagram of the key structure of an sptree. 24

3.2 The recursive data type for an sptree. 25

3.3 A diagram of an example sptree. 25

3.4 The implementation of the sptree in Figure 3.3. 26

3.5 A next-step function, represented in sptree form. 27

3.6 The core functions implementing reachability analysis. 31

3.7 The core lemma used in the correctness proof of the reachability functions. 33

3.8 The final result for the proof of correctness of the reachability functions. . 35

4.1 The core lemma used to prove semantic preservation for the optimisation

in WordLang. 39

4.2 The final result for the proof of correctness of the optimisation in WordLang. 41

4.3 The core lemma used to prove semantic preservation of the optimisation in

FlatLang. 44

4.4 The proof strategy used for verifying the correctness of the optimisation in

FlatLang. 46

4.5 The final result of semantic preservation for the optimisation in FlatLang. 47

4.6 Summarised results of code reduction tests for the optimisation in FlatLang. 48

A.1 The data type for a WordLang function. 58

A.2 The record data type for WordLang program state. 59

A.3 The data types for FlatLang operations, expressions, and declarations. . . 61

A.4 The record data types for FlatLang program state and program environ-

ment. 62

C.1 The raw results of code reduction tests for the optimisation in FlatLang. . 70

9

10

Chapter 1

Introduction

Optimising compilers have had a significant impact in the field of Computer Science

since their inception. Previously, compilers had simply translated hand-written assembly

code correctly and quickly rather than optimising run time efficiency. However, advances

in compiler optimisation allowed powerful high-level languages to be used, safe in the

knowledge that these new compilers would transform the code into fast, correct assembly

language. This has led to the abundance of high-level languages we see today, and now

most languages are commonly used with an optimising compiler – even lower-level lan-

guages such as C have powerful optimising compilers such as the GNU Compiler Collection

(GCC).

As optimising compilers become more powerful, there is an increasing risk that such

a compiler will introduce a fault into critical software prevalent in the modern world. A

verified optimising compiler is therefore desirable – one that effectively optimises code,

but is also proved not to introduce any faults in the resulting binary. Two notable efforts

to create a verified compiler are CompCert (§ 1.2.2) and CakeML (§ 1.3); the latter is

the focus for this project.

This project tackles implementing and verifying global dead code elimination optimisa-

tions for the CakeML compiler, in two of its intermediate languages. This chapter contains

background information on dead code elimination and optimising compilers (§ 1.1), com-

piler correctness (§ 1.2) with a focus on interactive theorem-provers (§ 1.2.1), and lastly

a brief overview of CakeML (§ 1.3).

1.1 Optimising compilers

An optimising compiler seeks to maximise some favourable attribute of a compiled exe-

cutable, or minimise some unfavourable one. For example, a compiler should minimise

the time taken to execute a program, and the size of the executable. The general princi-

ple is that sacrificing time and resources (such as memory usage) in order to optimise at

compile time gives benefits at run time.

Optimising compilers are implemented as several passes of transformations: each

transforms the program into a semantically-equivalent one, but with some optimisation

11

12 CHAPTER 1. INTRODUCTION

applied. The transformations are executed in succession, forming a pipeline. All modern

compilers have some form of optimisation in their pipelines – for example, GCC allows the

user to specify the level of optimisation. The user may want highly optimised binaries,

or alternatively a fast compile to speed up an edit-compile-debug cycle of programming.

1.1.1 Dead code elimination

The optimisation considered in this project is dead code elimination, which removes code

that does not affect the results of a program (dead code). Code which can never be ex-

ecuted due to the control flow of the program (unreachable code), or which only affects

dead variables (variables that are never read), is therefore deleted during compilation.

This can reduce the size of compiled binaries and, in the case of dead variable elimina-

tion, speed up program execution, as unnecessary instructions are not executed. Dead

code elimination can also enable optimisations further down the compilation pipeline, by

simplifying program structure.

1.2 Compiler correctness

A correct or verified compiler does not violate the language specification of any code that

it is compiling. Such a compiler is semantics-preserving : the semantics of the source

code is equivalent to that of the compiled machine code. All observable output of the

program is therefore as dictated by the language specification and semantics, and there

are no compiler-induced errors (miscompilations). In most cases, these guarantees are

excessive, but for safety-critical software the potential consequences of miscompilation

are not negligible.

There are two main approaches to verifying compiler correctness. Formal verification

proves semantic preservation through deductive logic (or a similar method), and compiler

validation tests the compiler rigorously to identify any anomalies. This project focuses

on formal methods, using an interactive theorem-prover (§ 1.2.1).

Compiler verification is not a new concept: the first compiler correctness proof was

published in 1967 [9]. Neither is the use of interactive theorem-provers – the same proof

was soon automated with Stanford LCF (Logic for Computable Functions – see § 1.2.1).

Compiler verification continues to be a field of research, and the most complete verified

compiler to date is CompCert (§ 1.2.2).

1.2.1 Interactive theorem-provers

Interactive theorem-provers can simplify compiler verification by automating much of the

process, allowing verification to take a high-level approach. This is similar to how a

correctly-chosen high-level language can simplify the implementation of an algorithm.

The use of formal methods to prove compiler correctness presents significant challenges.

A detailed framework describing language semantics is required to specify the semantic

properties we wish to preserve, encompassing the source code level down to the assembly

code level. This requires a wide range of definitions, from high-level constructs (modules,

1.2. COMPILER CORRECTNESS 13

objects, types, and more) to machine constructs (instructions, memory, and so on). As

a result, verified compilers tend to have many more intermediate languages than non-

verified ones: breaking down the compilation into many smaller steps allows the proof of

correctness to be broken down into more tractable subproofs.

Transformations between these intermediate languages are complicated, with some

optimisation at each stage. This makes it difficult to prove compiler correctness. For

example, during compilation functional languages must be transformed to imperative,

memory models (such as stack and heap) must be realised, and more besides. For a

verified runtime too, garbage collection must be implemented and verified. This will

delete data from the heap at run time, which must be shown to have no relevance to the

program.

This is too difficult to attempt by hand for a real-world compiler – therefore a theorem-

prover is used. Automated theorem-provers operate unassisted, searching for a proof

automatically – these are not usually appropriate as compiler algorithms are complex,

resulting in a large proof search space. The generated proofs can also be indecipherable

to humans, making it difficult to update the compiler.

However, interactive theorem-provers allow the user to provide the overarching proof

strategy, while automating the minutiae of simplification and so on. This reduces the work

of the user, but uses their understanding of the compiler algorithms to guide the proof.

The generated proofs are a series of guidance steps1 that make up the user’s interaction

with the proof system – these are simple and condensed, and so easily reproduced or

updated. The degree of automation can vary, from proof checkers, to largely automated

systems with minimal guidance.

LCF and successors

A pioneering interactive theorem-prover was Logic for Computable Functions (LCF)

[4], devised in 1972 by Robert Milner and others as an alternative to the many prior

automated-theorem provers2. LCF is the predecessor of HOL (the interactive theorem-

prover used by CakeML and therefore this project), and has inspired many other interac-

tive theorem-provers, such as Isabelle.

LCF and its successors use a strongly-typed language to define a “theorem” abstract

data type – this theorem type can only be constructed by a trusted module implementing

primitive inference rules. The strong typing then ensures theorems can be generated only

by compounding these inferences – this is an elegant way to guarantee that only valid

theorems are created, using well-understood, sound typing systems. The LCF family also

has a subgoaling facility: a goal can be broken down into many smaller, more tractable

subgoals, which when taken together imply the original. The user simply specifies the

method of deconstructing the goal, and the prover generates the subgoals.

1In HOL, these are the tactics and tacticals in § B.3.1 and § B.3.2.
2Milner said “I was always more interested in amplifying human intelligence than I am in artificial

intelligence”, referring to his interest in interactive, computer-assisted proof as opposed to fully automated

proof [6].

14 CHAPTER 1. INTRODUCTION

The strongly-typed language used in LCF is ML, which was created alongside LCF as

a meta-language for creating proof tactics (ML stands for “Meta-Language”). Standard

ML is a descendant language of ML, and the ancestor of CakeML.

1.2.2 CompCert

CompCert [7] is the most well-known and complete example of a formally verified optimis-

ing compiler. Started in 2005, CompCert compiles a large subset of the C99 programming

language (ISO/IEC 9899:1999). The compiler currently targets four architectures, and is

specified, implemented, and proved correct using the interactive theorem-prover Coq.

CompCert guarantees that the observable behaviour of compiler-generated code is one

of the possible observable behaviours of the input code, as given by the language specifica-

tion and semantics. The CompCert compilation pipeline involves thirteen transformations

to eleven intermediate languages – the proof of semantic preservation is therefore also split

into thirteen sub-proofs, one for each pass.

However, CompCert is not verified for all stages of the compilation pipeline, just the

“middle-end”. A compilation pipeline consists of three stages, the frontend (for parsing,

type-checking, and early simplification to give an abstract syntax tree), the middle-end

(compilation into an assembly code abstract syntax tree – most optimisations are executed

here too), and the back-end (code generation from the abstract syntax tree, assembly,

and linking object files into executables). As CompCert is not proven to be semantics-

preserving for the front-end and back-end, it is possible for errors to be introduced here.

A fully (or end-to-end) verified compiler (verified for all stages of the compilation

pipeline) is therefore desirable – CakeML has such a compiler.

1.3 CakeML

The CakeML project [3] is an open-source collaboration started in 2012, aiming to create

the CakeML language with an optimising, end-to-end verified compiler. The CakeML

language is based on a substantial subset of the functional language Standard ML (SML),

which (like the rest of the ML language family) provides static type checking (at compile-

time), as well as type inference. High-level abstractions such as higher-order functions,

pattern-matching, and polymorphism, make SML useful in both compiler-writing and

theorem-provers3.

The interactive theorem-prover HOL4 (§ 2.1) is used to specify the language semantics

and compiler in higher-order logic, The core of CakeML is a translator for functions speci-

fied in HOL to CakeML functions [10]. This generates a proof for each translation, stating

that the input HOL function is semantically equivalent to the resulting CakeML function.

The CakeML compiler is written in HOL, then translated to CakeML. Evaluating the

HOL compiler specification on the CakeML compiler implementation (the output of the

translator) produces a verified implementation of the compiler – this is similar to the

standard approach to bootstrapping a compiler [8]. The front-end and middle-end of the

3HOL4, the theorem-prover used with CakeML, is a library for theorem-proving in SML.

1.4. PURPOSE OF THIS PROJECT 15

compiler are specified in HOL and verified in this way. Validated models of instruction

set architectures allow verified translations to architecture-specific instruction sets too,

and so CakeML achieves an end-to-end verified compiler. This sets it above CompCert,

which only verifies the middle-end. So far, verified binaries have been produced for the

x86-64, ARM, RISC-V and MIPS architectures.

CakeML is continually under development, and its current version passes through

twelve intermediate languages. The subset of SML supported has grown dramatically

since the start of the project, and many optimisations have been successfully implemented

and verified too.

1.4 Purpose of this project

This project implements an inter-procedural (global) dead code elimination optimisation

for two intermediate languages of the verified, optimising compiler CakeML. The optimisa-

tion is proved to preserve semantics in both languages using the interactive theorem-prover

HOL4.

Currently, even simple CakeML programs take a long time to compile, as the large

“basis” library (mirroring the SML basis library) is prepended onto any code before com-

pilation. A lot of unnecessary code is therefore compiled – a global dead code elimination

pass would ideally remove this early on in the compilation pipeline. This pass was im-

plemented and verified for two separate languages – one early in the pipeline, the other

late.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Preparation

This chapter details the preparation work undertaken for this project prior to most of the

implementation.

The main preparation for this project was familiarisation with the interactive theorem-

prover HOL4 (referred to as “HOL” in this document). The CakeML language specifica-

tion and compiler algorithm are written in HOL, and all compiler proofs are created within

the HOL system. Familiarity with HOL is therefore necessary to develop on the CakeML

codebase, but this was no small task: the HOL documentation estimates that one full

month is required to have a basic understanding of HOL, when starting from scratch. This

is because proving in HOL is very different to coding in imperative/functional languages,

and requires a distinct skill set.

The project involves two of the CakeML intermediate languages (WordLang and

FlatLang), so familiarity with these was required too. An overview of these languages

can be found in Appendix A.

This chapter therefore gives an overview of the HOL system (§ 2.1), specifies the

starting point of the project (§ 2.2), and details the plan of work (§ 2.3).

2.1 HOL4

Familiarisation with HOL was achieved through careful examination of the HOL docu-

mentation, and supervisions with Anthony Fox. This process continued throughout the

project – in particular many concepts were elucidated by the first stages of proof on the

optimisation itself.

A brief introduction to HOL follows – more information on the basic tools used for

this project can be found in Appendix B, and in the HOL4 documentation [1] [2].

HOL (which stands for “Higher-Order Logic”) is a tool for aiding proofs in higher-

order logic using sequents. It provides a programming environment for proving theorems

and constructing other proof tools, as well as many decision procedures and automated

provers which can discharge simple proofs – this allows the user to focus on the higher-level

17

18 CHAPTER 2. PREPARATION

proof strategy. HOL is a widely-used proof tool at the cutting edge of research1.

HOL is implemented as a library in SML, and effectively provides an abstraction

layer above SML for interaction with higher-order logic. Theorem-proving is essentially

programming in SML, with extra functions and handles for manipulating higher-order

logic constructs such as terms and theorems.

Interaction through plugins for the Vim and Emacs editors to manage a goalstack

of active desired proofs (§ B.3), and powerful proof tools known as tactics (§ B.3.1) and

tacticals (§ B.3.2) make HOL a powerful aid in theorem-proving, but also a difficult one to

master. HOL also allows for the compilation of scripts, which contain definitions, axioms,

and theorems (with their proofs), into theories (§ B.2). These are re-usable, modular units

– for example the HOL codebase contains boolTheory, encapsulating Boolean theory.

Familiarisation with the workflow of interactive specification, proof, and theory export

(§ B.4) using the Vim editor was achieved with the help of Anthony Fox and Magnus

Myreen. Without supervision from experienced mentors, learning to use HOL is a difficult

task, in part due to the many available tools and limited documentation.

2.2 Starting point

This section details the starting point of this project. Note in particular the limitations of

the starting point for the FlatLang intermediate language (§ 2.2.1) which complicated

work on the optimisation for FlatLang.

The CakeML codebase is open-source, and can be found on GitHub2. It includes

the specification and semantics of the language, and the compiler algorithm, all defined

and verified in higher-order logic using the HOL4 interactive theorem-prover. The com-

piler is proven to be semantics-preserving, and many compiler optimisations have been

implemented and verified.

This project focuses on the intermediate languages FlatLang and WordLang, the

first and the antepenultimate intermediate languages respectively. The specifications

and semantics of both of these languages are part of the CakeML codebase, as are the

algorithms for compilation to/from them. The optimisations written in this project

will be added as transformations within the languages themselves. Each language has

a number of optimisations already written and verified – these proofs provided some

inspiration for the project implementation, and some useful theorems. Many results in

the CakeML codebase were pre-existing, but any results about the new optimisations

were written as part of the project – however, a number of general results about the

CakeML codebase also had to be proved. There are GitHub issues that generated this

project3.

1In 2017, a course on HOL was given at KTH, Stockholm for advanced master students, consisting of

approximately thirteen hours of study each week for nine weeks [11].
2https://github.com/CakeML/cakeml.
3https://github.com/CakeML/cakeml/issues/336 and https://github.com/CakeML/cakeml/

issues/337.

https://github.com/CakeML/cakeml
https://github.com/CakeML/cakeml/issues/336
https://github.com/CakeML/cakeml/issues/337
https://github.com/CakeML/cakeml/issues/337

2.3. PROJECT PLANNING AND PRACTICE 19

The HOL4 interactive theorem-prover is also open-source, and can also be found on

GitHub4. It has tutorials, documentation, and guidebooks available (though these are

incomplete), as well as a reference library. The implementation of sptrees (a key data

structure in this project – see § 3.1) is part of the HOL libraries, and it comes with

many useful theorems. Many further definitions and theorems were created as part of

this project, and some of these were incorporated into the latest version of HOL. I had no

prior experience with HOL or any other form of computer-assisted proof before starting

this project.

2.2.1 Unforeseen limitations of the starting point

The FlatLang intermediate language did not exist on the master branch of the CakeML

GitHub repository at the time of writing, as it has not yet superseded its predecessor,

ModLang. This is an issue with the CakeML development timeline rather than this

project: at the beginning of the project, FlatLang was expected to become part of the

master branch in January 2018. However, this has not happened at the time of writing

(May 18, 2018). Therefore one of the success criteria cannot be achieved: the optimisation

in FlatLang cannot be integrated into the latest version of the CakeML compiler.

Work on both dead code elimination implementations therefore primarily used the

type+module-update branch of the repository, which contains the latest version of Flat-

Lang. Both optimisations have been integrated into this branch, which therefore achieves

the integration success criterion to the fullest extent possible.

The success criterion of demonstrating the effect of the optimisation in FlatLang

on code size was not possible until late on in the project: the basis library on the

type+module-update branch did not build until May 7, 20185, preventing the compi-

lation of any code. The extension aim of empirically determining the efficiency of the

optimisations is not possible as the remainder of the compiler does not build, preventing

any benchmarking.

2.3 Project planning and practice

This section details the planning of the project and the key practices followed over its

course. In particular, the plan of work is detailed, followed by an overview of the third-

party tools used, and the backup and version control practices employed.

2.3.1 Plan of work

This project is well-suited to the waterfall method: it adds to a larger project and so

has a well-understood progression. It can be further split into three sub-projects, and

each of these was implemented using an evolutionary model: the core implementation

was completed, and then gradually refined while attempting to prove its correctness. The

last two sub-projects were executed in parallel, due to the similarities between them.

4https://github.com/HOL-Theorem-Prover/HOL.
5Commit URL: https://github.com/CakeML/cakeml/commit/52ebb2.

https://github.com/HOL-Theorem-Prover/HOL
https://github.com/CakeML/cakeml/commit/52ebb2

20 CHAPTER 2. PREPARATION

The plan for the project is detailed below:

1. Requirements and preparation: familiarise with the HOL system and the sptree

data structure, with supervision from Anthony Fox.

2. Sub-project (core aim): abstract reachability functions.

(a) Implementation: implement the abstract reachability functions operating on

sptrees, with supervision from Magnus Myreen.

(b) Verification: prove correctness of these functions, with feedback into the im-

plementation allowing refinement. Supervised by Anthony and Magnus.

3. Sub-projects (core and extension aims): optimisations in WordLang and in

FlatLang.

(a) Requirements and preparation: familiarise with the FlatLang and WordLang

languages, with supervision from Magnus.

(b) Implementation (core aim): implement the FlatLang and WordLang opti-

misations roughly in parallel.

(c) Verification (core and extension aims): prove the correctness of both optimisa-

tions roughly in parallel, with supervision from Magnus and feedback into the

implementation (as before). The WordLang verification is a core aim, while

the FlatLang verification is an extension aim.

4. Evaluation (core and extension aims): run tests from the CakeML codebase,

demonstrate the benefits of the optimisations, and identify areas for improvement

in future work.

This plan differs to the originally proposed plan of work: the optimisation in Word-

Lang was moved to a much later stage of the project, as the WordLang and FlatLang

implementations and proofs have features in common. Executing them in parallel is

therefore sensible to avoid repeated work. The implementation of the abstract reachabil-

ity functions was therefore the first task – this also is sensible, as it does not involve the

CakeML codebase and so can be achieved before familiarisation with CakeML is complete.

It also allows more experience with HOL before tackling CakeML proofs.

There were some unexpected changes to the timeline of the project: the verification

of the WordLang optimisation took significantly longer than planned. This optimisa-

tion in WordLang was intended as a starter project, but due to the low-level nature of

WordLang, its proofs were more involved than expected (§ 4.2.2). Evaluation was also

not possible until late on in the project (§ 4.3).

Disruptions to the plan of work

The evaluation stage of the project was impeded due to the delay in the CakeML devel-

opment timeline, detailed in § 2.2.1. As a result, the optimisation in FlatLang could not

be integrated into the master branch, regression tested, nor benchmarked.

2.3. PROJECT PLANNING AND PRACTICE 21

2.3.2 Third-party tools

The two third-party tools used in this project are the CakeML codebase, and the HOL4

interactive theorem-prover. Both are open-source, and are described in § 2.2.

2.3.3 Backups and version control

The project was carried out entirely on my own personal computer, a Dell XPS L702X,

with an Intel i7-2720QM processor and 8 GB of RAM. It is dual-booted with Windows

10 and Ubuntu 16.04 LTS – working with HOL was far simpler using Ubuntu. Frequent

backups were made to Google Drive and to a personal flash drive. The failure of my

personal computer would therefore not affect project progress.

Git was used as a version control system, with the open-source CakeML repository

hosted on GitHub. Project work used either local repositories or the GitHub-hosted

repository, and was later integrated into the type+module-update branch of the GitHub

repository.

22 CHAPTER 2. PREPARATION

Chapter 3

Implementation

This project falls into two distinct parts: implementing the optimisation, and verifying

its correctness. During the project, these were achieved in parallel – the implementation

inspires the proof of correctness, and difficulties in proving correctness necessitate changes

to the implementation. However for this document, the implementation more naturally

falls into this chapter, and the validation mostly into the next chapter.

The implementation of this project falls into three further sub-tasks, each of which is

examined in turn:

1. A next-step function is computed. This function is represented using an sptree

associative data structure (§ 3.1), and maps each global variable (for FlatLang)

or function number (for WordLang) to a set of global variables/function numbers

on which it depends. The function is computed by analysing the FlatLang or

WordLang intermediate code (§ 3.2).

2. This next-step function is used to determine which global variables/functions are

reachable (according to a specification of reachability) from a set of starting ones

(§ 3.3), and unreachable ones are removed.

3. These stages are stitched together to form the standalone optimisation (§ 3.2) –

this modular transformation is then simply added as another stage to the CakeML

compilation pipeline.

This implementation can be found in the type+module-update branch of the CakeML

GitHub repository, which contains the most up-to-date version of FlatLang1.

3.1 Sptrees

Simplified Patricia trees (“sptrees”) are a key data data structure in this project, and are

implemented as part of the HOL libraries. They will be used to represent the next-step

function.

1As discussed in § 2.2.1, FlatLang has not superseded its predecessor, ModLang, on the master

branch at the time of writing.

23

24 CHAPTER 3. IMPLEMENTATION

3.1.1 The next-step function

An associative data structure is needed to represent the next-step function: each key

represents a global variable (for FlatLang) or function number (for WordLang), and the

corresponding value represents a set of global variables/function numbers reachable from

the key in a single step. Both global variables and function numbers are represented as

natural numbers in the CakeML compiler – the structure therefore maps natural number

keys to sets of natural numbers.

Sptrees are such a data structure, and are optimised for use with HOL.

3.1.2 Basic principles of sptrees

Sptrees are tree structures in which any node in the tree is either empty or stores a value.

Each node has up to two children, so lookup of a node to become an efficient bit-by-bit

key comparison to branch left or right at each stage, giving O(n) lookup for an n-bit

key. Sptrees have natural numbers as keys, and are specialised for use in HOL – in HOL,

natural numbers are implemented as numerals:

N ::= ZERO | BIT2 N | BIT1 N ,

where ZERO represents zero, (BIT2 n) represents (2n + 2), and (BIT1 n) represents

(2n+ 1).

The structure of an sptree mirrors this: the root node is keyed by zero, and the left

and right subtrees are keyed by n 7→ (2n+ 2) and n 7→ (2n+ 1) mappings of the root tree

respectively (Figure 3.1). Lookup of a node therefore branches left for an even key and

right for an odd key, recursively stripping down a single BIT2 or BIT1 constructor at

each branch.

0

2

6

14

.

10

.

4

12

.

8

.

1

5

13

.

9

.

3

11

.

7

.

Figure 3.1: A diagram of the key structure of an sptree. Note that the subtree rooted

at node 1 is a mapping of the tree rooted at node 0, in which every key n is mapped to

(2n+ 1). Similarly the subtree rooted at node 2 is a mapping n 7→ (2n+ 2).

3.1. SPTREES 25

3.1.3 Implementation and well-formedness

1 datatype ’a sptree =

2 LN (* Leaf-None *)

3 | BN of ’a sptree * ’a sptree (* Branch-None *)

4 | LS of ’a (* Leaf-Some *)

5 | BS of ’a sptree * ’a * ’a sptree; (* Branch-Some *)

Figure 3.2: The recursive data type for an sptree containing values of type α. Values

can be stored at any LS or BS node in the tree.

Figure 3.2 shows the implementation of the recursive data type for an sptree, written

in Standard ML. In HOL, the constructors can be curried: (BN LN LN) can be used

instead of BN(LN,LN). The HOL curried constructors will be used from now on. The four

constructors represent the following:

• Leaf-None, LN. A terminal node (at the bottom of a tree), containing no key-value

pair.

• Branch-None, BN t1 t2. A binary branching node (within the tree), containing

no key-value pair, and branching to two subtrees, t1 and t2.

• Leaf-Some, LS a. A terminal node with a single key-value pair, with value a.

• Branch-Some, BS t1 a t2. A branching node with a single key-value pair, with

value a and subtrees t1 and t2.

The sptree in Figure 3.3 can therefore be represented by the code in Figure 3.4.

0 = ZERO

“Implementing”

2 = BIT2 ZERO

“and”

6 = BIT2 (BIT2 ZERO)

“a”

14 =

BIT2 (BIT2 (BIT2 ZERO))

“optimisation”

12 =

BIT2 (BIT1 (BIT2 ZERO))

“for”

1 = BIT1 ZERO

“verifying”

5 = BIT1 (BIT2 ZERO)

“compiler”

9 =

BIT1 (BIT2 (BIT1 ZERO))

“CakeML”

2n+ 2 2n+ 1

Figure 3.3: A diagram of an sptree, containing string values. This sptree contains

the following key-value mappings: {0 7→ “Implementing”, 1 7→ “verifying”, 2 7→ “and”,

5 7→ “compiler”, 6 7→ “a”, 9 7→ “CakeML”, 12 7→ “for”, 14 7→ “optimisation”}.

26 CHAPTER 3. IMPLEMENTATION

1 BS

2 (BS

3 (BS (LS "optimisation") "a" LN)

4 "and"

5 (BN (LS "for") LN)

6)

7 "Implementing"

8 (BS

9 (BS LN "compiler" (LS "CakeML"))

10 "verifying"

11 LN

12)

Figure 3.4: The implementation of the string sptree in Figure 3.3.

Sptree sets

Sptrees are useful to represent sets of natural numbers: a structure of type unit sptree

can store a unit value at every number in the set.

An sptree set should be unique: there should be only one sptree representation of

any set. HOL defines a well-formedness property (WF tree) ensuring that sptrees do not

contain redundancy: for example, trees of the form (BN LN LN) and (BS LN a LN) could

be simplified to LN and (LS a) respectively. A well-formed tree has no such redundancy,

and HOL provides a function which converts trees to well-formed equivalents storing the

same key-value pairs. Under this property, each set of keys has a unique representation.

3.1.4 Sptrees in this project

A structure of type ((unit sptree) sptree) is used to represent a next-step function:

the natural number keys correspond to global variables/function numbers, mapping to

sptree sets of variables/function numbers.

For example, the pseudocode in Figure 3.5a can be represented as the sptree next-step

function in Figure 3.5b. If the global variable global_2 is the entry point of this program,

then clearly global variables global_3, global_4, and global_5 have no effect on the

program – these should be removed by a dead code elimination pass.

3.2. CODE ANALYSIS IMPLEMENTATION 27

1 val global_0 := 0;

2 val global_1 := lookup global_0 + 1;

3 val global_2 := (* entry point *)

4 lookup global_1 * lookup global_0;

5 val global_3 := lookup global_4;

6 val global_4 := lookup global_3;

7 val global_5 := lookup global_0;

(a) Pseudocode for a program consisting of a series of global

assignment and lookup operations. The lookup operation is effectively

a dereference of a global variable, and global_2 is the entry point of

the program. This pseudocode can be considered an oversimplification

of a simple FlatLang program – FlatLang programs consist of a

series of top-level declarations (§ A.2.1).

0

{}

2

{0, 1}

4

{3}

1

{0}

5

{0}
3

{4}

(b) The next-step function of the pseudocode in Figure 3.5a in the form

of an sptree, mapping each global variable to the set of global variables

on which it depends. The value stored in global_2 depends on

global_0 and global_1, hence the value for key 2 in the data

structure is the set {0, 1}.

Figure 3.5: An example of a unit sptree sptree data structure used to represent a

next-step function for global variables.

3.2 Code analysis implementation

The first step in any compiler optimisation is an analysis of the program, to determine

what code transformation (if any) is safe, in that it cannot affect the observable behaviour

of the program.

This section details these code analyses implemented for both WordLang (§ 3.2.1) and

FlatLang (§ 3.2.2), and the corresponding code removal functions. The implementation

in FlatLang is the most useful for CakeML development: the compiler currently prepends

the entire basis library onto any user-written code, so a global dead code elimination pass

early on in the compilation pipeline would remove most of this and reduce work for later

stages. The optimisation in WordLang was intended as a simple introduction to the

implementation and its proof, simplifying the FlatLang case – however, the WordLang

28 CHAPTER 3. IMPLEMENTATION

proof of correctness was more difficult than anticipated (§ 4.2.2).

3.2.1 Code analysis in WordLang

This section describes the code analysis for WordLang, which returns a next-step

function (§ 3.1.1) and later executes the code removal.

A WordLang program (§ A.1.1) consists of a list of 3 -tuples, each encapsulating a

low-level, assembly-like function: the first item of each tuple is a WordLang function

number in the domain of the next-step function. It maps to a set given by analysing the

third item in the tuple, a WordLang prog term which encapsulates the corresponding

WordLang function body. The prog term is recursively searched for Call or LocValue

expressions, which can reference other function numbers. For the Call case, the target

of the call is in the next-step set, as are any function numbers found in the return and

exception handler code. For the LocValue case, the location referenced is in the set. For

all other expressions, the next-step set is empty.

The next-step function is accumulated by analysing each function in the list in this

way, and combining their results – the function analyseWordCode implements this.

Overall, the optimisation is implemented in the function removeWordProg, which ex-

ecutes the following:

1. Take in the program entry point and list of functions as arguments. Note that for

WordLang, the optimisation cannot determine the program entry point itself.

2. Analyse the list of functions (using the analyseWordCode function) to give a next-

step function. Ensure this satisfies the WF SET TREE predicate with a call to

mk_wf_set_tree (§ 3.3.3, Equation 3.2).

3. From the next-step function and program entry point, determine a set of all

reachable WordLang functions using the abstract reachability analysis function

closure_spt (§ 3.3).

4. Filter the list of WordLang functions to remove any that are not determined to be

reachable.

3.2.2 Code analysis in FlatLang

This section describes the code analysis functions which determine a next-step function

from a FlatLang program, and the functions which later execute code removal.

FlatLang programs and expressions are more complicated than WordLang ones

(§ A.2.1) – this complicates the analysis pass too. A FlatLang program is a list of

top-level declarations of values, types, and exceptions, which are sequentially executed.

The value declarations contain expressions, which can contain operations. The analysis

determines which global variables (initialised by operation (GlobalVarInit : Op)) may

lookup which others (referenced by operation (GlobalVarLookup : Op)). Pseudocode

for a highly simplified FlatLang program is shown in Figure 3.5a.

3.2. CODE ANALYSIS IMPLEMENTATION 29

Building the next-step function

The list of declarations is processed item-by-item into a next-step function and starting set

of immediately reachable global variables by the function analyseCode. Each expression

in a value declaration (of the form Dlet exp) is analysed to form a starting set and some

mappings in the next-step function. The latter is easily achieved by mapping all possible

global variable initialisations to all possible global variable lookups in the expression, to

ensure safety.

Determining the starting set is more subtle. Some declarations have observable effects,

even if their global variables are not reachable in the sense of the optimisation (for example,

a Raise expression observably causes an exception irrespective of global variables) – these

should not be removed.

Declarations are therefore categorised on their purity and whether they are “hidden”.

Pure expressions. For this analysis, these have no immediate effect on program state

other than assigning to global variables: assigning to a global variable that is never

read is unobservable behaviour, but all other effects on state may be observable. Pure

expressions are therefore candidates for removal – conversely, all impure expressions must

have all global variable initialisations and lookups in the starting set.

Hidden expressions. These are not executed unless their global variables are refer-

enced (for example, a function body is not executed unless the function is called via its

global variable). Their global variables are therefore not added to the starting set, and

only mappings in the next-step function are considered. However, all other functions

must be assumed to be immediately reachable.

This is a coarse-grained strategy, implemented when difficulties were encountered while

attempting to prove the correctness of the initial optimisation implementation. This is

an example of the trade-off between efficacy of the optimisation and ease of proof of

correctness.

Note that the FlatLang analysis determines the starting set itself, a key difference to

the WordLang case which has the program entry point supplied to it.

The overall optimisation

Overall the optimisation is implemented in the function removeFlatProg, which executes

the following:

1. Take in the list of declarations as an argument.

2. Analyse the list of declarations (using the analyseCode function) to give a next-

step function, and a starting set of immediately reachable global variables. Ensure

the next-step function satisfies the WF SET TREE predicate using mk_wf_set_tree

(§ 3.3.3, Equation 3.2).

30 CHAPTER 3. IMPLEMENTATION

3. From the next-step function and starting set, determine a set of all reachable global

variables using the abstract reachability analysis function closure_spt (§ 3.3).

4. Filter the list of declarations to remove any that are both pure and do not initialise

any reachable global variables. These clearly cannot have any observable effects.

3.3 Reachability analysis

This was the first part of the project to be implemented: conceptually it is relatively

simple, so the proof of its correctness was the main focus.

The reachability analysis takes in a starting set of reachable global variables (for

FlatLang) or function numbers (for WordLang), and a next-step function over global

variables/function numbers created by the code analysis pass (§ 3.2.1 for WordLang, and

§ 3.2.2 for FlatLang). It returns the set of all nodes reachable in the next-step function

from the starting set, which might therefore be reached during program execution and

so should not be removed. The specification for this analysis (§ 3.3.1) and the core

implementation (§ 3.3.2) follow, as well as the proof that the implementation meets the

specification (§ 3.3.3).

3.3.1 Specification and reachability relations

This reachability analysis must follow some specification of reachability to be useful to the

optimisation. This is specified using the abstract reachability relations (Equation 3.1).

All variables are italicised, and all HOL functions are monospaced – this convention will

be used for the remainder of this document.

isAdjacent tree x y
def⇔ ∃ setA setB .

(lookup x tree = SOME setA) ∧ (y ∈ domain setA) ∧
(lookup y tree = SOME setB) ,

isReachable tree
def
= (isAdjacent tree)∗ .

(3.1)

where the isReachable relation is the reflexive, transitive closure (RTC) of the

isAdjacent relation. Both take a next-step function parameter (tree), and relate two

nodes x and y. The isAdjacent relation states that node y can be reached in a single

step from node x (they are adjacent) if lookup of x gives next-step set setA, which con-

tains y. Furthermore, y is in the domain of the next-step function (and so can be looked

up to give setB). The isReachable relation (as the RTC of this) relates any node to

itself, and to all nodes reachable in any number of isAdjacent steps. RTC induction and

rewrite theorems are usefully provided by the HOL system as part of relationTheory.

The reachability analysis therefore takes in a starting set of nodes and a next-step

function, and returns the sptree set of all nodes that are reachable in the next-step function

(according to isReachable) from any of the starting nodes.

3.3. REACHABILITY ANALYSIS 31

3.3.2 Reachability implementation

1 fun close_spt reachable seen tree =

2 let val toLook = (difference seen reachable) in

3 if toLook = LN then reachable else

4 let val index = (getOne toLook) in

5 case (lookup index tree) of

6 NONE => reachable

7 | SOME new => close_spt (insert index () reachable)

8 (union new seen) (delete index tree)

9 end

10 end;

11

12 fun closure_spt start tree = close_spt LN start tree;

Figure 3.6: The core functions implementing reachability analysis. Arguments

reachable and seen are sptree representations of sets, and so the difference,

delete, and union functions are analogous to the set operations of the same name. The

insert operation on line 7 adds the value index to the set reachable, and the function

getOne returns a value from a non-empty set. The last argument (tree : unit

sptree sptree) represents a next-step-function (§ 3.1.4) – (lookup index tree) in

line 5 therefore returns an sptree set of all nodes reachable from index in a single step.

The separation of these two functions (even though close_spt is simply an auxiliary

function for closure_spt), enables proofs over the properties of close_spt

independently of closure_spt (§ 3.3.3).

The closure_spt function (line 12) is a graph search of the next-step function tree

from a set of root nodes start. This follows a similar pattern to the tricolour algorithm

[5], used for tracing live references for heap garbage collection. This algorithm maintains

three separate sets of nodes: a white set of unencountered nodes, a black set of fully

explored nodes (all outgoing edges have been traversed), and a grey set of encountered

but not explored nodes. The algorithm iteratively takes a grey node and explores all of

its outgoing edges: encountered nodes are coloured grey, and the parent node is coloured

black once its edges have been examined. When there are no more grey nodes, the

algorithm terminates: all black nodes are then reachable, all white ones unreachable.

This must hold, as black nodes cannot have edges to white ones (or else the white nodes

would have been turned grey).

In the close_spt function, (reachable : unit sptree) is the set of black nodes,

(toLook : unit sptree) is the set of grey nodes (all other nodes are white). On each

recursive call, a node index is taken from the grey toLook set (line 4) and its outgoing

edges are traced by lookup of index in tree. Encountered new nodes are added to the

seen set (line 8) from which toLook is computed, and index is moved to the black

reachable set.

32 CHAPTER 3. IMPLEMENTATION

There are two termination cases for close_spt: the standard case when the grey set

is empty (line 3), and one due to the sptree representation of the next-step function. As

each node is explored, it must be looked up in tree to find a next-step set. If the node is

not in the domain of the next-step function, the algorithm fails due to malformed input

in the seen argument (line 6). However this case should not occur for sensible inputs,

which is important for the proof of correctness for this function: a contradiction in the

assumptions will be derived to show that this case never occurs (§ 3.3.3).

There are some key differences with the tricolour algorithm. A grey set is not explicitly

maintained – instead a set of seen nodes represents all nodes seen so far (the union

of the grey and black sets). The grey set toLook is then computed as the difference

between the seen set and the black set (reachable) – this prevents re-exploration of

nodes encountered for the second time. This implementation is also destructive on its

input: it deletes nodes from tree on each recursive call. This simplifies the proof that

this function terminates (§ 4.2.1).

3.3.3 Reachability proofs

The reachability functions are only useful if shown to obey their specification (§ 3.3.1).

Note that the proofs in this subsection do not involve any of the CakeML codebase, and

so were a useful introduction to proof in HOL.

A more general lemma (Figure 3.7) about the helper function close_spt had to be

proved in order to derive the desired results for the more specialised closure_spt function

(Figure 3.6). The helper function is more general, so more powerful function invariants can

be used as assumptions in the lemma. Once this lemma is proved, it can be specialised into

the desired result (Figure 3.8) and many assumptions will then trivially hold. Attempting

to prove the desired theorem directly results in a dead end, due to the lack of sufficiently

powerful assumptions concerning the function arguments.

Lemma for close_spt

This lemma was arrived at by careful reasoning about close_spt (Figure 3.6) to de-

termine some of its invariants. It was developed iteratively: attempts to prove initial

formulations of the lemma resulted in dead ends, so new assumptions were introduced to

enable the proof. The desired lemma is stated in Figure 3.7.

The lemma examines an arbitrary recursive call in the execution of close_spt, and

the assumptions are invariants which hold between recursive calls. The terms fullTree

and roots represent the initial next-step function and starting set of nodes (respectively)

in the initial call to closure_spt – note that they are never explicitly stated as such,

but have the same key properties (expressed in the assumptions). These terms are the

essence of those initial arguments, encapsulating enough of their properties to give the

correct results (even if the terms may never arise in any execution pattern). In particular

roots is a mathematical set rather than an sptree set.

This lemma should be examined in more detail:

3.3. REACHABILITY ANALYSIS 33

1. WF reachable 2. WF seen 3. WF tree

4. WF SET TREE fullTree 5. subspt reachable seen 6. subspt tree fullTree

7. ∀ n. n /∈ domain reachable ⇒ lookup n tree = lookup n fullTree

8. ∀ k. k ∈ domain seen ⇒ ∃ n. (n ∈ roots ∧ isReachable fullTree n k)

9. ∀ k. k ∈ domain reachable ⇒ (∀ a. isAdjacent fullTree k a⇒ a ∈ domain seen)

10. roots ⊆ domain seen 11. roots ⊆ domain fullTree

domain (close spt reachable seen tree) =

{a | ∃ n. isReachable fullTree n a ∧ n ∈ roots}

Figure 3.7: The desired lemma for the correctness proof of the abstract reachability

functions. As before, variables are italicised and HOL functions are monospaced.

Assumptions. Every assumption must be an invariant preserved between recursive

calls, and must be a tautology when this lemma is specialised later for closure_spt.

• 1, 2, 3, and 4. The various sptrees in this algorithm should be well-formed (indi-

cated by the predicate WF). This invariant holds because the various sptree opera-

tions used (difference, insert, union, and delete) all preserve well-formedness2,

and is necessary as getOne may fail on sptrees that are not well-formed.

The fourth assumption can be expanded:

WF SET TREE fullTree
def⇔

(∀ x y. lookup x fullTree = SOME y ⇒ domain y ⊆ domain fullTree ∧ WF fullTree).

(3.2)

This ensures that any set in the range of the next-step function is a well-formed (and

so unique) sptree set, and each value in the set is also in the domain of the next-step

function: there are no spurious nodes in the range of the next-step function that

cannot themselves be looked up.

An accompanying function (mk_wf_set_tree, also written as part of the project)

transforms any sptree next-step function into one with the same stored values which

satisfies this predicate. It may be possible to dispense with this predicate, and derive

the result from the language semantics (§ 5.3).

• 5 and 6. The set of reachable nodes must be a subset of the ones seen so far, and

the tree next-step function must be a subgraph of the initial next-step function,

fullTree (recall a node is deleted from the next-step function on each recursive call).

This is expressed with the subspt relation, representing sub-sptrees: a sub-sptree

has a subset of the keys of its super-sptree, and has the same value stored at each

key as the super-sptree.

2These proofs are in sptreeTheory, except for the proof for difference – this was one of the many

sptree lemmas proved in this project.

34 CHAPTER 3. IMPLEMENTATION

• 7. Nodes are deleted from the next-step function when they are added to the

reachable set, so any nodes in the modified next-step function tree but not in the

reachable set must also be in the original next-step function fullTree.

• 8. Any nodes in the seen set must be reachable, otherwise they would not have

been encountered.

• 9. The next-step nodes (according to isAdjacent) of any node in the reachable set

must have been encountered. These are the grey nodes of the tricolour algorithm.

• 10 and 11. The initial starting set (roots) must be a subset of both the nodes seen

so far and the domain of the initial next-step function fullTree.

Conclusion. At any recursive call, (close spt reachable seen tree) should return

an sptree set of numbers which are reachable in the initial next-step function fullTree

from any node in the starting set roots . This relates the abstract reachability relation

isReachable to the abstract reachability function close_spt in the desired manner.

The proof strategy for this lemma is an induction over the series of recursive calls to

close_spt. The induction theorem automatically generated by HOL when the function

was defined is used to start the proof. Overall, the proof shows that if a step in the

recursion satisfies the desired properties, then so does the previous one.

Each termination case of the function is proved to satisfy the desired properties:

Case (toLook = difference seen reachable = LN). This is the expected termination

case, when the search for reachable nodes has been exhausted. The sets seen and reachable

are therefore equal. By the ninth assumption, any node in the reachable set has its

adjacent nodes also in the reachable set (as it is equivalent to the seen set). The reachable

set is therefore closed under isAdjacent. As the roots set is a subset of the seen set by

the tenth assumption, and isReachable is the RTC of isAdjacent, the returned value

(reachable) must satisfy the conclusion.

Case (lookup index tree = lookup (getOne toLook) tree = NONE). This can only

occur on malformed input, and so is proved by deriving a contradiction in the as-

sumptions. The index node is not in the domain of the next-step function tree, and

(toLook = difference seen reachable). Therefore index is in the seen set but not in the

reachable set. By the eighth assumption, index is reachable from the roots set in fullTree.

However to be reachable, either index is in the domain of fullTree, or is in roots (and so

in the domain of fullTree by the eleventh assumption). But by the seventh assumption

(lookup index tree = NONE = lookup index fullTree), so index is not in the domain of

fullTree, giving a contradiction.

Recursive case. This case requires instantiation of the inductive hypothesis, which

states that if all assumptions are satisfied for the recursive case, then the recursive call

3.3. REACHABILITY ANALYSIS 35

satisfies the initial goal. The goal therefore becomes:

domain

(close spt (insert index () reachable) (union new seen) (delete index tree)) =

{a | ∃ n. isReachable fullTree n a ∧ n ∈ roots} .
(3.3)

Provided the assumptions in Figure 3.7 hold for the new arguments

(insert index () reachable), (union new seen), and (delete index tree) (as they

did for original arguments reachable, seen, and tree) then the goal is a direct result of the

inductive hypothesis. These can be shown to hold due to the properties of the sptree oper-

ations used, and the derivations of the terms new and index – the details are omitted here.

The conceptual simplicity of this proof made it a useful introduction to HOL. However,

it was significantly more difficult to express in the HOL proof system, requiring well over

100 proof tactics – no small task for a beginner to HOL. The overall proof script for

reachability in sptrees contains well over 500 proof tactics and 50 definitions and theorems

(including many lemmas about sptrees in general).

Specialisation for closure_spt

1. WF start 2. WF SET TREE tree 3. domain start ⊆ domain tree

domain (closure spt start tree) = {a | ∃ n. isReachable tree n a ∧ n ∈ domain start}

Figure 3.8: The final result for the correctness proof of the abstract reachability

functions, obtained by specialising the lemma for close_spt (Figure 3.7).

The closure_spt function is a specialisation of the close_spt function, with arguments

as follows: (reachable = LN), (seen = start). The lemma for close_spt (Figure 3.7) is

therefore specialised by instantiating reachable and seen with these values, and setting

tree = fullTree (in the first step of the recursion, the initial next-step function is equivalent

to the recursive argument). Discharging tautologies in the assumptions gives the overall

theorem for closure_spt, and the desired result for use in this project (Figure 3.8).

36 CHAPTER 3. IMPLEMENTATION

Chapter 4

Evaluation

This chapter summarises the main methodology adopted for evaluation (§ 4.1), details of

the core proof results obtained as part of primary evaluation (§ 4.2), and finally a brief

overview of secondary evaluation for FlatLang (§ 4.3).

4.1 Evaluation methods

The primary evaluation method for this project is formal proof of correctness: if the

optimisations are proved to always terminate and never affect observable behaviour, then

they are unconditionally safe, and will fit into the CakeML compiler without adverse

effects. This is therefore a success criterion for WordLang, and an extension criterion

for FlatLang (this was achieved).

However, an “optimisation” which does not transform code is trivially safe, but is

useless. The optimisation should therefore be shown to remove a significant amount of

dead code. This is not feasible for WordLang: compiling to its stage in the pipeline and

demonstrating code reduction is difficult due to the many stages prior to WordLang.

The code reduction is also expected to be small due to the number of prior optimisation

passes. The WordLang evaluation therefore falls primarily to the proof of correctness.

However for FlatLang, demonstrating the efficacy of the optimisation using some exam-

ple programs is a core aim of this project. This was only possible from May 7, 2018 due

to delays in the CakeML development timeline (§ 2.2.1). Note that this was not possible

for arbitrary user-written code, but only the examples included in the CakeML codebase.

Further secondary evaluation metrics (such as the compilation speedup due to the

optimisations) would then be considered, measured using the benchmarking suites in the

CakeML codebase. However, this was not possible at the time of writing, as discussed in

§ 2.2.1. The FlatLang branch of the repository (type+module-update) did not build,

preventing compilation of user-written code and benchmarking.

4.2 Proof of correctness

This section describes the main evaluation of this project: the proofs of termination and

semantic preservation for the optimisations in both WordLang and FlatLang.

37

38 CHAPTER 4. EVALUATION

The general approach to proving the termination of optimisation functions is in § 4.2.1.

The proofs of semantic preservation in WordLang (§ 4.2.2) and FlatLang (§ 4.2.3)

follow, using the semantic definitions described in Appendix A.

Note that both proofs of correctness are contained within their respective languages.

Unlike many proofs in verified compilers, they do not prove semantic preservation between

intermediate languages, but that transformations within a language preserve semantics.

4.2.1 Proofs of termination

The optimisation must terminate on all input, to prevent changes to the behaviour of the

overall compiler.

For all user-defined functions, HOL automatically attempts to prove their termination.

If it fails, it will ask the user for a proof – this is more common for recursive functions

with unclear termination cases. The function cannot be used until the termination proof

is provided, and packaged up with the function definition.

Termination of recursive functions was proved by providing a measure function, which

takes in the arguments of the function and returns a natural number. If this number

strictly decreases on every recursive call, then clearly the function terminates. The core

abstract reachability function (close_spt – see Figure 3.6) required such a proof, so it

was modified to delete a node from its sptree next-step function supplied as its argument

on each recursion. The measure for this is therefore the size of this next-step tree.

There is a subtlety with mutually recursive functions, required in the code analysis

for FlatLang: as FlatLang expressions can contain single expressions and lists of ex-

pressions (Figure A.3), mutually recursive analysis functions are needed for the element

case and the list case. These are declared in a single definition in HOL, and treated as a

pair of functions – to prove termination, a measure for each function in the pair must be

specified.

4.2.2 Proofs of semantic preservation in WordLang

The proof of correctness for WordLang is a core aim of this project. Due to the unforeseen

complexity of working with such a low-level language, this was the longest part of the

project and not the straightforward starter project initially planned.

As discussed above, testing the compiler through code inspection is not feasible, and

benchmarking is unlikely to give any insight as the performance gains for WordLang

are expected to be minimal. This proof is therefore the main evaluation method for

WordLang, and so an important result in this project.

The rest of this subsection references material in § A.1.2, concerning WordLang

semantics.

Lemma for WordLang semantic preservation

A more general lemma had to be proved before the desired theorem, as with the abstract

reachability proofs (§ 3.3.3). This lemma considers an arbitrary point in the evaluation

of some WordLang program, consisting of a single current function, function, and its

4.2. PROOF OF CORRECTNESS 39

accompanying state, state. This is compared to a point in the evaluation of a program

with the same current function, but a modified state, removedState. These states are

related by word_state_rel, and the evaluation cannot give an error (the WordLang

semantics define this as failure of the program, and this optimisation is not concerned

with failing programs – see § A.1.2). The proof shows that the two evaluations return

the same result, and the resulting states are related in the same way as the original ones.

1. evaluate (function, state) = (result , newState)

2. result 6= SOME Error 3. word state rel reachable state removedState

4. noInstall program 5. noInstall code state.code

6. noInstall code removedState.code 7. codeClosed reachable state.code

8. domain (findWordRef function) ⊆ domain reachable

9. gcNoNewLocs state.gc fun

∃ someState . evaluate (function, removedState) = (result , someState) ∧
word state rel reachable newState someState ∧

destResultLoc result ⊆ domain reachable

Figure 4.1: The desired lemma for the proof of semantic preservation for WordLang.

As before, variables are italicised and HOL functions are monospaced.

The set of reachable WordLang locations is not explicitly generated by the optimisa-

tion functions as described in § 3.2.1. This set instead fulfils all the necessary properties

of the set that will be generated by the optimisation, and so is a more generalised version

to simplify this proof. In particular, reachable is constrained to be at least as large as the

set that will be generated by the optimisation (see below). The state removedState also

emulates the state that will result from applying the optimisation.

The lemma is examined in more detail below.

Assumptions. Each assumption must be discharged when this lemma is specialised

into the final result of semantic preservation for WordLang.

• 1. This gives a handle on result and newState, the outputs of evaluating the initial

WordLang program.

• 2. The result of evaluation cannot be an error – in this case, the observable be-

haviour of the program would be failure, which should not occur for any well-formed

WordLang program.

• 3. The relation word_state_rel, parametrised by the sptree set reachable, relates

two states that are equal in all but the code record field.

For the code field, any function numbers in the reachable set must be common to

both state and removedState (no reachable functions should have been removed).

Finally, word_state_rel states that any WordLang locations in the store,

memory , stack , or locals fields of state must be in the reachable set. To become

40 CHAPTER 4. EVALUATION

part of these fields, a location must have been encountered during execution and so

is reachable. This assumption is necessary, as values can be retrieved from any of

these fields during evaluation.

• 4, 5, and 6. The update to the WordLang language on Apr 14, 20181, gave func-

tionality to load and execute code at run time, which would break this optimisation.

These assumptions ensure no Install functions are in the program to load external

code.

• 7. The reachable set must be at least as large as the one that will be generated by

the optimisation. This assumption explicitly ties in with the optimisation imple-

mentation, and can be expanded:

codeClosed reachable state.code
def⇔

(∃ codeList . state.code = fromAList codeList) ∧(
∀ n m . n ∈ domain reachable ∧
isReachable (mk wf set tree (analyseWordCode code) n m)

⇒ m ∈ domain reachable
)
.

(4.1)

This states that there is some associative list representing the the code field of the

state – this is necessary as the optimisation acts on a list of functions, which is stored

efficiently in an sptree in the state. The function fromAList trivially maps the list

to the sptree, and is provided by HOL. The reachable set should then be closed

under the isReachable relation (Equation 3.1) applied to the next-step function

generated by code analysis of the program code. This gives the required constraint

on the size of the reachable set.

• 8. Any referenced locations in the current function must also be in the reachable set.

When this lemma is specialised, the current function will be the standard starting

function defined by the semantics, and this assumption will trivially hold.

• 9. The garbage collector posed an unforeseen complication to this proof. It must

not be able to introduce any new WordLang locations when it runs, or it would

break this optimisation. This is clearly a reasonable assumption.

Conclusion. Evaluating the current function with removedState gives the same result

as evaluation with state, and returns a resultant state someState. This resultant state

must have newState related to it by word_state_rel, and any WordLang locations

referenced in the result must be in the reachable set.

Only the first conjunct is important for semantic preservation. However, the other two

are necessary in proving this lemma: the evaluation may call itself on another function

number (such as in a Call to another function), and use the resulting intermediate value

1Commit URL: https://github.com/CakeML/cakeml/commit/ffce1e9.

https://github.com/CakeML/cakeml/commit/ffce1e9

4.2. PROOF OF CORRECTNESS 41

and state to compute its final return value. These last two conjuncts therefore pro-

vide necessary results about these intermediate values and states in the proof by induction.

The proof strategy for this lemma is straightforward to understand, but difficult to

execute, and was the single longest task of this project. There is an induction theorem

associated with the evaluation function, which can be used to induct on the execution

of the function. This splits it into twenty sub-cases, one for each type of WordLang

prog (Figure A.1) – each sub-case must be proved separately, instantiating the inductive

hypotheses as necessary. This is complicated by the various interactions with the state

that occur, including machine-word operations and more. Proving that word_state_rel

still holds for the resultant states after these operations was intricate, requiring many

other significant lemmas.

This lemma was therefore difficult and time-consuming to tackle, requiring the cre-

ation of over 100 definitions and theorems, and using over 1500 proof tactics overall.

For comparison, a variable liveness proof for DataLang (the language directly preceding

WordLang) exists in the CakeML codebase, and it consists of a little over 50 definitions

and theorems, and 500 proof tactics.

Specialisation into the final proof of WordLang semantic preservation

The lemma for WordLang correctness (Figure 4.1) is specialised into the final proof

result by marrying it with the abstract reachability result (Figure 3.7), and instantiating

terms to match the WordLang semantics (§ A.1.2).

1. startingFunction = Call NONE (SOME start) [0] NONE

2. evaluate (startingFunction, state) = (result , newState)

3. result 6= SOME Error 4. state.code = fromAList originalCode

5. reachable = closure spt (insert start LN)

↪→ mk wf set tree (analyseWordCode originalCode)

6. newCode = removeWordCode reachable originalCode

7. ALL DISTINCT (MAP FST originalCode)

8. domain (findLocState state) ⊆ domain reachable

9. gcNoNewLocs state.gc fun 10. noInstall code state.code

∃ someState . evaluate (startingFunction,

↪→ state with code := fromAList newCode) = (result , someState)

Figure 4.2: The final result for the proof of WordLang semantic preservation, tying

in the abstract reachability functions with the code analysis and the lemma shown in

Figure 4.1.

The reachable set from the lemma is instantiated to a set explicitly generated by the

optimisation, and removedState is defined as the state resulting from code removal on

the original state. The lemma is specialised to consider the start of the evaluation of

42 CHAPTER 4. EVALUATION

a WordLang program as defined by the semantics, rather than an arbitrary point in

execution. The current function becomes a specific Call function to a supplied program

entry point, which is also used by the abstract reachability functions as an argument

(§ 3.2.1).

The desired result is shown in Figure 4.2. Though it seems more complicated than

the original lemma, it is in fact more specialised for application to this optimisation. In

particular, the word_state_rel assumption has been almost discharged as a tautology:

its only remnant is in the eighth assumption (see below). An overview of this final theorem

follows.

Assumptions. These are simply specialisations of the assumptions in the lemma (Fig-

ure 4.1), with some discharged as tautologies.

• 1 and 2. The evaluation in the lemma is specialised to match the WordLang

semantics, with a specific starting function (startingFunction) consisting of a Call

to a specific start function.

• 3. As before, the evaluation should not give an error.

• 4. As before, the program code can be transformed from an sptree into a list.

• 5 and 6. The optimisation implementation is explicitly used here. The

reachable state is defined as being generated by the abstract reachability func-

tion closure_spt (§ 3.3), with the next-step function generated by code analysis

through analyseWordCode (§ 3.2.1). The function mk_wf_set_tree is as described

in § 3.3.3, Equation 3.2. The resulting code (newCode) in the conclusion is now

defined as the result of the optimisation.

• 7, 8, and 9. These cannot be discharged here, as they will only hold true in

the context of the compilation pipeline – this is a proof about general WordLang

programs, rather than compiler-generated WordLang programs.

The seventh assumption states that all function numbers in the code are distinct.

This will hold for compiled code, as the compiler will not duplicate any function

numbers.

The eighth is the last remnant of word_state_rel: all WordLang locations in the

store, memory , stack , and locals fields of the state must be reachable. An unforeseen

problem in this proof is that the initial state of a WordLang program is derived

from DataLang (the preceding language in the compilation pipeline) – proving this

holds true is therefore out of the scope of this project, as it involves a different

intermediate language.

The last assumption is as in the lemma: the garbage collector cannot create new

WordLang locations. Once again, this is not provable without results from Data-

Lang and the CakeML garbage collection process, and is out of the scope of this

project.

4.2. PROOF OF CORRECTNESS 43

Both of these unproved assumptions are expected to hold true, but their proof is

intricate and not a task for this project. They will be proved in future CakeML

work.

• 10. As in the lemma (Figure 4.1), no Install functions are permitted – these

would load and execute external code, breaking this optimisation. Each program

must therefore be tested for this type of function before the optimisation is executed.

Conclusion. Evaluating the same starting function with the optimised code should give

the same result as evaluation with the non-optimised code. As before, the fromAList

function trivially maps an associative list to an sptree. This is clearly the final, powerful

result of semantic preservation desired.

The proof of this theorem required results from all parts of the project: the code

analysis functions, the abstract reachability analysis, and the WordLang lemma above.

Each stage must output terms that satisfy the assumptions of the next – for example, the

code analysis functions must be shown to output sptrees with the WF_SET_TREE property

(this is easily achieved through use of mk_wf_set_tree).

4.2.3 Proofs of semantic preservation in FlatLang

The proof of semantic preservation in FlatLang was an extension aim of this project,

and was completed. Due to the unforeseen difficulty of the WordLang proofs, limited

time was available to execute this extension.

The rest of this subsection references material in § A.2.2, concerning FlatLang se-

mantics.

Lemma for FlatLang semantic preservation

As in the WordLang case, a more general lemma must first be proved, and this follows a

similar pattern to the WordLang lemma. It considers an arbitrary point in the evaluation

of a FlatLang program, consisting of a list of declarations (decs , of type (dec list) –

see § A.2.1), an environment (env), and state (state) – see § A.2.2. This is compared to

the evaluation of a modified code list, with the same environment and a modified state.

The relation flat_state_rel relates the original and modified states, and the evaluation

cannot return a type error. Both evaluations should return the same result (result) and

set of new constructors (newCons), and the two returned states should be related by

flat_state_rel in the same way.

Note the primary difference to the WordLang lemma: in WordLang, program code

is stored as part of the program state, whereas FlatLang has separated state and code.

A relation between the original and modified code must therefore also be specified (they

are related by removeUnreachable). The overall lemma is shown in Figure 4.3.

44 CHAPTER 4. EVALUATION

1. evaluate decs env state decs = (newState, newCons , result)

2. result 6= Rabort Rtype error

3. env .exh pat 4. flat state rel reachable state removedState

5. removeUnreachable reachable decs = removedDecs

6. decsClosed reachable decs

7. domain (findEnvGlobals env) ⊆ domain reachable

∃ someState .

evaluate decs env removedState removedDecs = (someState, newCons , result) ∧
flat state rel reachable newState someState ∧

domain (findResultGlobals result) ⊆ domain reachable

Figure 4.3: The desired lemma for the proof of semantic preservation for FlatLang.

As before, variables are italicised and HOL functions are monospaced.

Assumptions. These largely follow a similar pattern to the WordLang case.

• 1 and 2. Handles on result and newState are provided, and the evaluation cannot

produce a type error.

• 3. All pattern matches in the input FlatLang program (such as in Mat pattern-

match expressions or Handle exception-handler expressions) must be exhaustive.

This was an unforeseen necessity: without this constraint, a pattern-match can run

out of patterns and give an error, causing problems in the proof. As a result, the

optimisation must be executed marginally later in the compilation pipeline than

desired, after some other FlatLang optimisations which ensure exhaustive pattern-

matches. This is a small drawback, as those prior passes will execute on code that

will then be removed by this optimisation (this is wasted work). This is another

trade-off between implementation efficacy and simplicity of proof for verified com-

pilers, and can be seen as a phase order problem affecting the proof of correctness.

• 4. The relation flat_state_rel mirrors the WordLang relation, word_state_rel.

All fields of the state and removedState records are equal, except the list of globals

(the optimisation acts over global variables, so naturally the two states will store

different globals).

A separate relation is defined for the globals lists: for any global variable in the

reachable set, the two lists must have the same values (reachable global variables

should not be changed). Furthermore, any variables present in removedState must

also be in state (no new global variables can be introduced by the removal). Note this

does not preclude state storing a variable where removedState does not (i.e. because

it has been removed), as desired.

Lastly, any global variables referenced in the refs field of the state must also be

in the reachable set – no variables will become part of this field during execution

unless they are reachable.

4.2. PROOF OF CORRECTNESS 45

• 5 and 6. The reachable set must be related to the code lists, decs and removedDecs .

The fifth assumption states that removedDecs is a version of decs filtered to remove

all code without observable behaviour. This means that all impure declarations are

kept (§ 3.2.2), and any declaration which initialises a reachable global variable is

kept.

The sixth assumption constrains the reachable set to be at least as large as the set

that will be generated by the optimisation. The definition of decsClosed can be

expanded:

decsClosed reachable decs
def⇔ analyseCode decs = (startingSet , nextStep)

⇒ domain startingSet ⊆ domain reachable ∧(
∀ n m . n ∈ domain reachable ∧
isReachable (mk wf set tree (analyseCode decs) n m)

⇒ m ∈ domain reachable
)
.

(4.2)

This is very similar to the WordLang case; the sole difference is that the Flat-

Lang code analysis determines the starting set of immediately reachable nodes

(startingSet), rather than having it supplied as an argument. The starting set

must therefore be a subset of the set of reachable nodes too.

• 7. The environment may contain references to global variables during program

execution, which must all be in the set of reachable nodes.

Conclusion. Evaluating the optimised code (removedDecs) with removedState gives

the same result and the same new constructors as evaluation of the original code (decs)

with state. The resultant state generated (someState) must have newState related to

it by flat_state_rel, and any global variables referenced in the result must be in the

reachable set. As in the WordLang lemma, only the first conjunct is of interest for

semantic preservation, but the others allow for stronger inductive hypotheses in the proof.

The proof strategy for this lemma is more intricate than in the WordLang case,

though the proofs themselves are simpler. This is due to the definition of the

evaluate_decs function: this first calls the function evaluate_dec (NB: singular dec)

on the first element of the list of declarations, and then recursively calls itself on the re-

mainder of the list (if no error is returned). The evaluate_dec function simply adds new

constructors to the output for exception or type declarations, but for value declarations

will call a recursive evaluate function on the expression contained within the declaration.

46 CHAPTER 4. EVALUATION

evaluate_decs env state decs

Induct on decs

Inductive case: decs = h :: t

and h is kept in removedDecs

evaluate_dec env state h

Case split on h

Case:

h = Dtype...

Case:

h = Dlet exp

Mutual induction on:

evaluate and evaluate_match

Case:

h = Dexn...

Base case:

decs = []

Inductive case: decs = h :: t

and h is not kept in removedDecs

evaluate_dec env state h

Case split on h

Case:

h = Dtype...

Case:

h = Dlet exp

Mutual induction on:

evaluate and evaluate_match

Case:

h = Dexn...

Figure 4.4: The proof strategy for the FlatLang semantic preservation lemma, shown

as a tree. The root (lowermost) node represents the overall goal, and the children

represent the various case splits. The collected proofs of all leaves together enable the

proof of the root.

This tiered evaluation function necessitates a tiered proof structure too, shown in

Figure 4.4.

At the first level (evaluate_decs), induction on the list of declarations splits the

proof into the empty list case ([]) which can be discharged here, and the constructor case

(h :: t). This case then further splits based on whether the first declaration (h) is kept by

the optimisation or removed.

Each of these two cases then examines evaluate_dec at the second level of proof,

applied to the first declaration, h. Any exception or type declarations can be discharged,

leaving only value declarations containing an expression (of the form Dlet exp).

The third level of proof then considers the evaluate function applied to this expres-

sion – the function is mutually recursive with the evaluate_match function, concerning

pattern matching. The proof therefore follows a mutual induction using the induction

theorem generated by the definition of these two functions: this splits the proof into a

case for each FlatLang expression or pattern-match expression.

The proof of this lemma required over 150 definitions and theorems, using over 1500

tactics altogether.

Specialisation into final proof of FlatLang semantic preservation

The lemma must be specialised to explicitly generate the reachable set using the optimi-

sation. The state and environment must be specialised to the initial values as specified

by the semantics of FlatLang too. This result is shown in Figure 4.5.

4.3. SECONDARY EVALUATION 47

1. evaluate decs initialEnv initialState decs = (newState, newCons , result)

2. result 6= Rabort Rtype error

3. initialEnv .exh pat 4. analyseCode decs = (startingSet , nextStep)

5. closure spt startingSet (mk wf set tree nextStep)

6. removeUnreachable reachable decs = removedDecs

∃ someState .

evaluate decs env state removedDecs = (someState, newCons , result)

Figure 4.5: The final result of semantic preservation for the optimisation in

FlatLang.

This is similar to the FlatLang lemma above, however the reachable set is explicitly

derived, and the assumption about flat_state_rel is discharged as a tautology. A brief

overview of this theorem follows:

Assumptions. These are very similar to those in the FlatLang lemma.

• 1, 2, and 3. These are unchanged from the lemma, except the state and env have

become the initial state (initialState) and environment (initialEnv) specified by the

FlatLang semantics. The initial state contains no global variables and its refs field

is empty, and the initial environment has an empty v field of values. This trivially

discharges many assumptions about the state or the environment from the lemma.

• 4 and 5. The generation of the reachable set is made explicit. The analyseCode

function generates a starting set of immediately reachable nodes and a next-step

function, and the closure_spt function determines an overall set of reachable nodes

from these.

• 6. This is unchanged from the lemma.

Conclusion. The conclusion keeps only the first conjunct of the lemma, as it is the

only one necessary to show semantic preservation. It states that evaluating the optimised

code (removedDecs) gives the same result as evaluating the original code (decs), with all

else held constant.

This was proved using results from the code analysis functions, the abstract reach-

ability analysis, and the FlatLang lemma above: the results were stitched together in

sequence, with each stage satisfying the assumptions of the next (in a similar way to the

WordLang specialisation).

4.3 Secondary evaluation

Example programs provided in the CakeML codebase were used to demonstrate the re-

sulting code reduction of the optimisation in FlatLang. This analysis was not possible

48 CHAPTER 4. EVALUATION

until May 7, 20182 due to delays in the CakeML development timeline (§ 2.2.1), as the

example programs used did not build.

The results are summarised in Figure 4.6 (raw data can be found in Figure C.1). The

evaluation considered eight example programs (including the UNIX tools cat, diff, echo,

grep, patch, and sort), and evaluated five measures of code size on each, both before

and after optimisation, giving a measure of how much code was removed.

% of code removed

for various measures

of code size

No. of top-level

declarations

Expression

size

No. of global variable

initialisations

No. of global

variable lookups
Term size

Mean 81% 77% 83% 78% 83%

Std. deviation 9% 18% 9% 15% 14%

Figure 4.6: Summarised results of code reduction evaluation of the optimisation in

FlatLang. Five measures of code size were evaluated on eight example programs. In all

measures, the optimisation pass gives significant code reduction, demonstrating its

efficacy and usefulness.

The measures considered are as follows:

• Number of top-level declarations. Each declaration in FlatLang is of type

dec, and FlatLang code is a (dec list) (§ A.2.1). This measure is effectively the

size of that list.

• Expression size. Provided in the CakeML codebase are measures of expression size

for FlatLang expressions – this is the number of constructors required to define the

expression. Expressions can be contained within the value declarations over which

the optimisation acts (§ A.2.1).

• Number of global variable initialisations. The number of (GlobalVarInit

: Op) operations in the code, each of which initialises a global variable. This is

therefore the number of global variables that the optimisation determined to be

reachable.

• Number of global variable lookups. The number of (GlobalVarLookup : Op)

operations in the code, each looking up the value of a global variable.

• Term size. This is an SML measure rather than a HOL-implemented one. It

represents the size of a HOL term in terms of the number of SML constructors

required to express it.

4.4 Summary of results

The optimisations in both WordLang and FlatLang have been proved to be safe using

HOL: they will never affect the observable behaviour of any program. The FlatLang

2Commit URL: https://github.com/CakeML/cakeml/commit/52ebb2.

https://github.com/CakeML/cakeml/commit/52ebb2

4.4. SUMMARY OF RESULTS 49

optimisation has also been shown to remove a significant proportion of code from some

example programs.

The powerful proof results ensure that both optimisations can be integrated into the

CakeML codebase without adversely affecting the rest of the compiler. The demonstra-

tions in FlatLang show that the optimisation successfully ameliorates the problem it was

designed to by removing much of the basis library dead code from test programs – it is

therefore an effective addition to the CakeML compilation pipeline.

50 CHAPTER 4. EVALUATION

Chapter 5

Conclusion

This project has contributed to an open-source, optimising compiler for a high-level lan-

guage, but importantly one that is also verified to be correct. Over the course of the

project, the trade-off between efficacy of optimisation and ease of proof was encountered

several times: when a proof was found to be too difficult, the optimisation had to be

simplified to allow the proof to continue.

This chapter includes a full summary of the work completed (§ 5.1), possible improve-

ments that could be made on the project in future (§ 5.2), and additional related work

that could be attempted (§ 5.3).

5.1 Summary of the work completed

I have successfully implemented two dead code elimination passes and verified them to

preserve semantics: in WordLang (the antepenultimate intermediate language, and rel-

atively low-level), and in FlatLang (the first intermediate language, and relatively high-

level).

After a period of familiarisation with the HOL4 interactive theorem-prover, abstract

reachability functions were implemented and proved correct: operating on a next-step

function, these determine an overall reachable set of nodes. Code analysis functions were

implemented for WordLang and FlatLang, to generate a next-step function over func-

tion numbers (for WordLang) or global variables (for FlatLang). Combining reachabil-

ity functions and code analysis gave the overall optimisations, and these were evaluated

by proving properties of semantic preservation for both. The FlatLang optimisation was

further evaluated by measures of code reduction.

These optimisations were then integrated into mainstream CakeML development on

the type+module-update branch. This contains the most up-to-date version of Flat-

Lang, which does not exist on the master branch at the time of writing. Further evalua-

tion measures such as benchmarking and regression testing were not possible due to the

type+module-update branch not building at the time of writing.

Three out of the four core success criteria were achieved outright: the optimisation

was implemented for FlatLang, both implemented and verified for WordLang, and

demonstrated to remove unused FlatLang code. The final criterion was achieved as far

51

52 CHAPTER 5. CONCLUSION

as possible: the FlatLang optimisation is not part of the latest version of CakeML, but

is a part of the latest version that contains FlatLang. It will be a part of the main

compiler as soon as FlatLang itself is integrated into the master branch.

An extension aim of the project was achieved: the FlatLang optimisation pass was

verified to preserve semantics. Another extension aim was not fully achievable: empirical

tests of the compilation speedup due to the FlatLang optimisation were not possible

as the compiler did not build at the time of writing, an issue out of the control of this

project. However, some empirical measures of code size reduction were used to test the

optimisation.

5.2 Improvements on the work completed

There are several potential areas in which the optimisations could be improved to give

performance or efficacy benefits. Some of these areas are highlighted below.

• Granularity of the FlatLang optimisation. The high-level nature of Flat-

Lang makes it difficult to determine if a piece of code can have an observable effect.

For this project, many approximations had to be made, categorising code coarsely

on purity and whether it is “hidden” (§ 3.2.2). Improving the granularity of this

categorisation could give a finer optimisation, allowing more dead code to be elimi-

nated. However, this will come at the expense of a significantly more difficult proof

of correctness.

The optimisation also over-approximates by assuming that in any expression, any

initialised global variables can look up all global variables referenced. Some form of

flow analysis could improve the efficacy of the optimisation.

• Handling of Install functions in the WordLang optimisation. Late on in the

project, the WordLang language was updated with the functionality to load and

run new code at run time. This can cause problems when used with the optimisation

in this project: code that was previously considered dead (and has been removed)

may be referenced by the code newly installed at run time. This was handled by

modifying the optimisation not to run on any WordLang program containing an

function to install code at run time – this could be improved by running the analysis

pass, and then only executing the code removal if no such Install functions are

determined to be reachable.

• Necessity of the mk_wf_set_tree function. The mk_wf_set_tree function

(§ 3.3.3) is a costly part of the optimisation execution. It may not be necessary,

as compiled WordLang or FlatLang programs may result in next-step functions

satisfying the WF SET TREE predicate. The predicate encapsulates the concept that

WordLang or FlatLang code should not reference any function numbers or global

variables (respectively) that have not yet been defined. Proving that this is the

case would eliminate the need for this function, and make the optimisation more

efficient.

5.3. FURTHER WORK 53

5.3 Further work

Some areas for future work have been highlighted over the course of the project, where

the project could be built on or applied. Some of these are summarised below.

• Proof of properties of the derived WordLang state. The correctness proof for

the WordLang optimisation relies on results about the initial state of a WordLang

program, in particular the garbage collector and stored WordLang locations. These

results are expected to hold, but as the state is derived from DataLang (the previous

intermediate language in the compilation pipeline), the proof was out of the scope of

this project. Proving these results is therefore a possible extension task – however,

the complexity of garbage collection makes this a significant undertaking.

• Further evaluation of the FlatLang optimisation. As the type+

module-update branch of the GitHub repository does not build, no empirical evalu-

ation of the speedup due to the FlatLang optimisation was possible. Quantitative

analysis using the benchmarking suites on the CakeML codebase would provide in-

sights into the benefits of the optimisation, and highlight any areas for improvement.

• Further optimisations for WordLang or FlatLang. The knowledge of Word-

Lang and FlatLang gained through this project could be transferred into writing

and verifying another optimisation for either of these languages. For example, in

FlatLang a possible optimisation is a global purity analysis pass. This would move

pure constant computations out of loops, turning them into new declarations with

fresh names.

54 CHAPTER 5. CONCLUSION

Bibliography

[1] The HOL System Description, volume Kananaskis-11. 2017.

[2] The HOL System Logic, volume Kananaskis-11. 2017.

[3] CakeML development team. CakeML. https://cakeml.org/, accessed April 2018.

[4] Michael J. C. Gordon. From LCF to HOL: a short history. 1996.

[5] Tyler Hanna, Chester Holtz, and Jonathan Liao. Comparative Analysis of Classic

Garbage-Collection Algorithms for a Lisp-like Language. University of Rochester,

2015.

[6] John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem prov-

ing.

[7] INRIA. CompCert - The CompCert C Compiler. http://compcert.inria.fr/

compcert-C.html, accessed April 2018.

[8] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML:

A Verified Implementation of ML. Symposium on Principles of Programming Lan-

guages, 2014.

[9] John McCarthy and James Painter. Correctness of a Compiler for Arithmetic Ex-

pressions, volume 19 of Proceedings of Symposia in Applied Mathematics. American

Mathematical Society, 1967.

[10] Magnus O. Myreen and Scott Owens. Proof-producing Synthesis of ML from Higher-

Order Logic. International Conference on Functional Programming, 2012.

[11] Thomak Tuerk and PROSPER group. Interactive Theorem Proving (ITP) Course.

2017. Adapted from a course given for advanced master students given at KTH,

Stockholm. https://hol-theorem-prover.org/hol-course.pdf, accessed April

2018.

55

https://cakeml.org/
http://compcert.inria.fr/compcert-C.html
http://compcert.inria.fr/compcert-C.html
https://hol-theorem-prover.org/hol-course.pdf

56 BIBLIOGRAPHY

Appendix A

Intermediate languages

This appendix gives a basic overview of the intermediate languages WordLang and Flat-

Lang, on which the optimisations written for this project must act. An understanding

of the syntax, structure, and semantics of these intermediate languages is vital to the

execution of the project: in order to ensure preservation of semantics, these semantics

must be well understood. The code analysis driving the safety of the optimisation must

operate on the language syntax, with a clear understanding of the structure of a program

to prevent incorrect analysis too. An overview of WordLang can be found in § A.1, and

an overview of FlatLang in § A.2.

A.1 WordLang

The intermediate language WordLang is the antepenultimate language in the CakeML

compilation pipeline. It is an imperative language, with machine words, memory, a stack,

and a garbage collection primitive. Its simple structure makes it a good candidate for a

starter project tackling dead code elimination.

This section describes the structure and semantics of a WordLang program.

A.1.1 Structure of a WordLang program

A WordLang program consists of a list of tuples of type (num * num * prog) (a sim-

plified prog data type is shown in Figure A.1). The first number of the tuple is the

function number (the WordLang location storing that particular function), while each

prog roughly corresponds to an imperative function, and can reference other functions by

their numbers. The second number in the tuple is the number of arguments accepted by

the function – it is not relevant to the optimisations implemented in this project.

57

58 APPENDIX A. INTERMEDIATE LANGUAGES

1 datatype ’a prog =

2 Skip (* skip *)

3 | Move of ... (* move local variables *)

4 | Inst of ... (* assign local variable *)

5 | Assign of ... (* assign local variable to value of another *)

6 | Get of ... (* get local variable *)

7 | Set of ... (* set local variable *)

8 | Store of ... (* store in memory *)

9 | MustTerminate of prog (* must not time-out *)

10 | Call of (* call a function *)

11 (return information) * target * arguments * handler

12 | Seq of prog * prog (* sequential execution *)

13 | If of ... * prog * prog (* if statement *)

14 | Alloc of ... (* allocate storage *)

15 | Raise of ... (* raise an exception *)

16 | Return of ... (* return *)

17 | Tick (* clock tick *)

18 | LocValue of v * l (* for variable v, location l: assign v := l *)

19 | Install of ... (* install code at run time *)

20 | CodeBufferWrite of ... (* write to code buffer *)

21 | DataBufferWrite of ... (* write to data buffer *)

22 | FFI of ... ; (* foreign function interface *)

Figure A.1: The data type for the WordLang function. For simplicity, most

constructor arguments are omitted, save for recursive cases or for arguments of

particular interest to the analysis. Within the (return information) and handler

arguments to the Call constructor, there are also recursive instances of the prog data

type, to allow for return handler and exception handler code respectively.

Note that the Install, CodeBufferWrite, and DataBufferWrite expressions were

added by the CakeML team on Apr 14, 20181 as part of an update to the WordLang

language, giving functionality to load and run code at run time. This required some

modifications to the proof of correctness for the WordLang optimisation implemented in

this project (§ 4.2.2).

A.1.2 Semantics of WordLang

The semantics of WordLang specify an evaluation function, which takes in a WordLang

function of type prog and a WordLang state, and outputs a result as well as a resulting

state. The result can be either a time-out, exception, value, or even no result at all.

The WordLang state is a record data type, shown in Figure A.2, and encapsulates

the state of the whole program – this includes values stored in memory, the stack, the

remaining code of the program (other than the single function that is the first argument

1Commit URL: https://github.com/CakeML/cakeml/commit/ffce1e9.

https://github.com/CakeML/cakeml/commit/ffce1e9

A.1. WORDLANG 59

of the evaluation function), local variables, a clock, and more besides. The complexity

of this state as well as the low-level nature of WordLang made the proof of semantic

preservation for WordLang much more difficult than expected. For example, uses of

machine words (including bit operations) and references to locations stored in the state

further complicated the analysis of exactly what is reachable, and so made it difficult to

prove that no reachable code had been removed by the optimisation.

1 datatype (’a, ’c, ’ffi) state =

2 <| locals : (’a word_loc) sptree (* local variables *)

3 ; fp_regs : num |-> word64 (* floating-point registers *)

4 ; store : store_name |-> ’a word_loc

5 (* a store containing pointers to the heap and more *)

6 ; stack : (’a stack_frame) list (* the stack *)

7 ; memory : ’a word -> ’a word_loc

8 (* a function representing memory mappings *)

9 ; mdomain : (’a word) set (* domain of the memory function *)

10 ; permute : num -> num -> num (* sequence of bijective mappings *)

11 ; compile : ... (* compile function for code loaded at run time *)

12 ; compile_oracle : ...

13 (* compile oracle for code loaded at run time *)

14 ; code_buffer : ... (* code buffer for code loaded at run time *)

15 ; data_buffer : ... (* data buffer for code loaded at run time *)

16 ; gc_fun : ’a gc_fun_type (* the garbage collector function *)

17 ; handler : num (* position of current handle frame on stack *)

18 ; clock : num (* the clock *)

19 ; termdep : num

20 (* number of MustTerminate functions that can still be entered *)

21 ; code : (num * (’a prog)) sptree (* the program code *)

22 ; be : bool (* true if words are big-endian *)

23 ; ffi : ’ffi ffi_state (* foreign function interface *)

24 |> ;

Figure A.2: The record data type for WordLang program state. Of particular interest

to the analysis for this project are the locals, store, stack, and memory. These can

contain items of type (’a word_loc), which are either machine words or WordLang

locations – these are the very locations over which the analysis operates to determine

code reachability.

Note that the compile, compile_oracle, code_buffer, and data_buffer fields were

added by the CakeML team on Apr 14, 20182 as part of an update to the WordLang

language, giving functionality to load and run code at run time. This required some

modifications to the proof of correctness for the WordLang optimisation implemented in

this project (§ 4.2.2).

2Commit URL: https://github.com/CakeML/cakeml/commit/ffce1e9.

https://github.com/CakeML/cakeml/commit/ffce1e9

60 APPENDIX A. INTERMEDIATE LANGUAGES

The semantics of WordLang are then defined in terms of the observable behaviour of

a program– possible semantics are failure, the return of a value, or the non-termination

of the program. A semantics function encapsulates this: it takes as arguments a start

location (the location of the first WordLang function to execute) and a WordLang state,

and returns the observable behaviour of the program. This is computed by running the

evaluation function described above, with a specific first function (a Call to the provided

starting location) and the provided state as arguments. If the evaluation returns a time-

out or runs out of space, the behaviour is the program is deemed to be failure. If not,

the semantics function examines the resulting state’s foreign function interface, and uses

this to determine if the evaluation terminates or not – the program behaviour can then

be classified as terminating or diverging.

A.2 FlatLang

The intermediate language FlatLang is the first language in the compilation pipeline –

the abstract syntax tree is compiled directly to it. All global scoping is resolved, and all

modules are removed. Each value definition is also given a slot in a global variable store –

it is these global variables over which the dead code elimination analysis will be performed.

However, the resolution of modules and global scoping results in the entire basis library

being prepended onto the user-written source code – this is true even for the simplest

“hello world” programs, and is obviously wasteful and unnecessary, greatly bloating code

and creating further work for translators between intermediate languages. This therefore

makes FlatLang a good candidate for dead code elimination. As FlatLang is so early in

the compilation pipeline too, such an optimisation could significantly reduce the overhead

of compilation further along the pipeline by preventing unnecessary code being compiled

further.

This section describes the structure and semantics of a FlatLang program. Note

that FlatLang exists only on the type+module-update branch of the CakeML GitHub

repository (§ 2.2.1).

A.2.1 Structure of a FlatLang program

A FlatLang program consists of a list of declarations of values, types, and exceptions –

these declarations are of type dec. For dead code elimination, only the value declarations

are of interest, and these contain FlatLang expressions. Expressions are of type exp,

and have parallels to CakeML expressions (which in turn are similar to SML expressions).

Each expression also contains a trace of the expression through the compiler, allowing

for exploration of some of the transformations. Operations of type Op are also defined,

but only two of these are of interest for this analysis – the initialisation of a global

variable (GlobalVarInit), and lookup of a global variable (GlobalVarLookup). Simplified

definitions of operations, expressions, and declarations are shown in Figure A.3.

A.2. FLATLANG 61

1 (* Op = global variable init | global variable lookup | ... *)

2 datatype Op = GlobalVarInit num | GlobalVarLookup num | ...;

3

4 datatype exp =

5 Raise of exp (* raise exception *)

6 | Handle of exp * ((... * exp) list) (* handle exception *)

7 | Lit of ... (* literal *)

8 | Con of ... * (exp list) (* constructor *)

9 | Var_local of ... (* local variable *)

10 | Fun of ... exp (* function definition *)

11 | App of Op * (exp list) (* operation application *)

12 | If of exp * exp * exp (* if statement *)

13 | Mat of exp * ((... * exp) list) (* pattern match *)

14 | Let of ... * exp * exp (* let expression *)

15 | Letrec of ((... * exp) list) * exp; (* letrec expression *)

16

17 (* dec = value declaration | type decl. | exception decl. *)

18 datatype dec = Dlet of exp | Dtype of ... | Dexn of ...;

Figure A.3: The simplified data types for FlatLang operations (Op), expressions

(exp), and declarations (dec). For the purposes of this project, only the GlobalVarInit

and GlobalVarLookup operations are of interest, and only the Dlet value declaration.

Expression traces in the expression data type are omitted, as are any non-recursive

arguments other than those of type Op (as in the App case). Note that a FlatLang

program is of type dec list.

A.2.2 Semantics of FlatLang

Like the WordLang semantics, the FlatLang semantics define an evaluation function.

In this case, the function takes in as arguments an environment, a FlatLang state,

and FlatLang code (a list of top-level declarations, of type (dec list)). It returns a

resulting state, a set of any new constructors the program has created, and an option type

representing the outcome of evaluation (if any).

The state and environment arguments are record data types, and are shown in Fig-

ure A.4. They define the overall state of the program, including all local and global

variables, as well as some whole-program parameters such as whether pattern matches

are required to be exhaustive – this parameter in particular was an important constraint

for the correctness proof for the FlatLang optimisation (§ 4.2.3). The state is far simpler

than the WordLang case, making it easier to handle in proofs. However the environment

can store local values which may reference global variables, complicating the proof that

no reachable global variables have been removed.

62 APPENDIX A. INTERMEDIATE LANGUAGES

1 datatype ’ffi state =

2 <| clock : num (* the clock *)

3 ; refs : value store (* a store of values *)

4 ; ffi : ’ffi ffi_state (* foreign function interface *)

5 ; globals : (value option) list

6 (* a list of global variables, indexed by number *)

7 |> ;

8

9 datatype environment =

10 <| v : (variable_name, value) alist

11 (* a list of local values, indexed by name *)

12 ; c : ((id , type_id), arity) set

13 (* the set of existing constructors *)

14 ; exh_pat : bool (* true if pattern matches must be exhaustive *)

15 ; check_ctor : bool (* true if constructors must be declared *)

16 |> ;

Figure A.4: The record data types for FlatLang program state and FlatLang

environment. The global variables considered in this optimisation are numbers, and the

values they store are held in a list in the globals field of the state – the nth element of

the list corresponds to the nth global variable, and is NONE if not yet initialised.

References to global variables (through (GlobalVarInit : Op) and (GlobalVarLookup

: Op)) can occur in any values – therefore the refs and globals fields of the state, as

well as the v field of the environment can contain references.

The FlatLang semantics are defined in terms of the observable behaviour of the

program, just as in WordLang. The semantics function for FlatLang takes as arguments

a foreign function interface, the exh_pat and check_ctor flags of the environment, and

a program in the form of a list of declarations (of type dec list). It calls the evaluation

function with an initial environment, an initial state, and the program, and if a type

error ensues, the behaviour of the program is failure. Otherwise the resulting state (in

particular, its foreign function interface) and returned outcome are used to determine if

the observable behaviour is termination or divergence.

Appendix B

HOL4

This appendix details the core concepts of the HOL4 interactive theorem-prover necessary

for this project [1] [2]. This includes a basic understanding of HOL higher-order logic

constructs (§ B.1), descriptions of the main interfaces with HOL over the project (§ B.2

and § B.3), and some of the proof tools used (§ B.3.1 and § B.3.2).

B.1 Basic principles of HOL

The three basic HOL data types are types, terms, and theorems. These can be constructed

and destructed by the SML functions provided by the HOL library. An understanding of

these core data types was therefore necessary to understand HOL operation.

HOL types. Type variables or type operators – simple types such as bool are just type

operators which take no arguments, and compound types (such as function types) can be

constructed too. Simple type operators such as bool and → (the function type operator)

are bound to type operators of the same name in SML to enable easy construction – note

the difference between the SML handle and the underlying representation in HOL.

HOL terms. Constants, variables, λ-abstractions, and combinations (function appli-

cations). Variables and constants must have (possibly polymorphic) types specified.

Constants must also be scoped into theories, and λ-abstractions are equivalent up to

α-conversion. Each term has a type. Terms are only equivalent if both their type and

the underlying term are equivalent. This can cause problems in proof when the same

syntactic term has different polymorphic types.

HOL theorems (thm). Proven theorems – (hypotheses ` conclusion) in standard

logical notation, where both hypotheses and conclusion are of type bool. These can

only be created by a trusted module (in the LCF tradition – see § 1.2.1), by calling its

functions. A proof therefore exists for any theorem created, consisting of a sequence

of calls to those functions, which encapsulate primitive rules of inference: assumption

introduction and discharge, reflexivity, abstraction and β-reduction, parallel substitution,

63

64 APPENDIX B. HOL4

type instantiation, and modus ponens.

The quotation parser (again taking after LCF) allows construction of types and terms

without using explicit (and tedious) SML functions. Anything enclosed in backticks (“

‘‘...‘‘ ”) will be parsed to return a type or a term, enabling user-friendly construction of

higher-order logic entities1. Type inference, name resolution, and overloading resolution

are also executed on terms specified in this way. This is a layer that HOL provides above

the underlying SML, rather than SML syntax – it is handled by the HOL parser.

HOL’s key strength is that it abstracts away from low-level proof structures, enabling

high-level reasoning about the overall proof strategy. This is achieved through automation

of many proofs – for example, HOL will automatically try to prove that recursive functions

terminate (raising an error if it cannot, and asking for a proof to be provided), and

automatically generate induction theorems for recursively-defined data structures and

functions. Understanding how to store and use these generated theorems was an important

skill to learn.

HOL operates on a higher-order logic of expressions and types, known as simple type

theory [2]. First-order logic constructs (such as Boolean connectives and quantifiers)

are defined, but have no special significance (unlike in first-order logic). For example,

Booleans are simply constants of type bool in HOL which must be defined, and all

properties stated as axioms or derived rules. For example, T (true) and F (false) are

specified as distinct values in boolTheory2.

B.2 Scripts and theories

Managing a large project such as CakeML requires directories of HOL scripts, managed by

a Holmakefile in each directory. HOL provides the Holmake tool, which “compiles” and

“executes” a script – it compiles the SML, running the quotation parser on any HOL code,

and running through all (valid) proofs to generate theorems. It returns a theory file, which

can be reused in other projects. Holmake uses a Holmakefile to manage dependencies,

(re-)compiling scripts as necessary when they are updated. Familiarity with this tool was

therefore necessary for this project. This is analogous to the GNU make tool, which uses

a makefile to control the generation of executables.

HOL scripts allow HOL definitions and theorems to be pre-written, and imported into

the REPL later. Using only the read-evaluate-print-loop (REPL) to interact with HOL

is unwieldy.

Theories contain sets of types, constants, definitions, and axioms. They also contain

a set of all theorems proved so far from the axioms and definitions, and are the result of

any HOL session (HOL always maintains a current theory of the work done so far). The

Holmake tool exports theories to disk, allowing for persistent storage of definitions and

theorems.

1For example, we can write ‘‘λx.x‘‘ to denote the identity function, rather than write a complicated

mess of constructor functions.
2The BOOL_EQ_DISTINCT theorem: ` ¬(T⇔ F) ∧ ¬(F⇔ T).

B.3. THE GOALSTACK AND INTERACTIVE PROOF 65

As building the compiler in the first place (before commencing work on it) would take

infeasibly long, there is a Holmake --fast option to cheat proofs – this is not a good idea

for untested theories, but fine for building a local copy of the verified compiler.

B.3 The goalstack and interactive proof

HOL has interactive plugins for the Vim and Emacs editors so the user can write code

in a script file while simultaneously sending it over to a running HOL. This is the best

of both worlds: code is evaluated line by line and so easily modified (as in pure REPL),

but a persistent store of work also exists (as in pure script). Familiarity with this tool

therefore greatly simplified the project.

This allows for interactive, goal-oriented proof – a top-down strategy which starts with

the desired result (the goal), and breaks it down into smaller, more tractable subgoals.

This process constructs a proof tree, with the choices made in how to decompose the goal

forming the proof strategy. HOL automatically generates the validation: the proof that

all subgoals taken together imply the original goal. The user therefore need only prove

each subgoal, and HOL will do the rest.

Goals are managed using the goalstack, an SML structure of records of (goal list,

validation) pairs: each pair has a list of subgoals and a validation function which takes

in a list of theorems (i.e. the resulting theorems from proving the subgoals) and returns

a theorem, effectively reversing the splitting of the goal into subgoals. The goalstack

is managed through the SML structure, and interactive keyboard bindings aid this –

management of the goalstack was another key feature to master for this project.

The proof tools for top-down, goal-oriented proof are tactics and tacticals – these are

described below.

B.3.1 Tactics

Tactics are SML functions taking in a goal and returning a list of subgoals and a validation

function. (tactic : goal -> goal list * validation). A tactic “solves” a goal if it

reduces it to the empty list of subgoals. Tactics are derived from the trusted module

of primitive inferences, so they cannot derive false proofs – at worst they can produce

unsolvable subgoals, or introduce too many assumptions. This holds even when a tactic

is poorly implemented in the underlying SML, making them resistant to failure.

The more common types of tactics (and therefore the main ones used in this project)

are summarised below – there are of course many more, but this gives a rough guideline

to the basic tools available.

Rewrites. These substitute terms in the goal using equality theorems. The most elegant

proofs are purely rewrites, using the transitivity of equality to prove a goal. There are

many subtly different types of rewrite, all of which must be understood in order to prove

effectively.

66 APPENDIX B. HOL4

Provers. HOL has some automatic decision procedures to find a proof. For example

there are natural number solvers, first-order provers, and SAT solvers. Theorems can be

supplied as further resolution candidates.

Induction. These start a proof by induction on a universally-quantified goal or

recursively-defined data type. For example, inducting over a list breaks the goal into

the base case (the empty list, []) and the inductive case (the list constructor, h::t)

with an inductive hypothesis as an assumption (i.e. assumption on t). Using induction

theorems generated on definition of a recursive function or data type is of particular use.

Cases. Performing case splits on terms can be useful – this can mirror many compiler

functions, which perform a case analysis too.

Instantiation. Instantiating universally- or existentially-quantified variables is a useful

tool – for example, to solve an existentially-quantified goal we can provide a witness, a

term for which the goal holds true. There are a number of ways to instantiate, with

varying degrees of automation.

Lemma introduction. Assumptions can be introduced in a great number of ways, with

varying degrees of automation. This is usually paired with instantiation, to introduce and

instantiate a previously-proved theorem. These were some of the more difficult methods

to master.

Resolution. Resolving the goal with its assumptions or a given theorem can create

assumptions with useful instantiations. Care must be taken, as the number of assumptions

can explode.

Cheat. The cheat tactic proves any goal given3. This is useful in determining proof

strategy: a large goal requires many lemmas in its proof, so these can be cheated to

allow progress, and the lemmas can be proved later. This ensures that time is not wasted

proving lemmas that will not be useful for the overall goal, and mirrors the top-down

approach to proof in general.

B.3.2 Tacticals

The tacticals are in general functions that return tactics. They allow the user to manipu-

late tactics, and in particular organise proofs – a summary of the more common tacticals

is given below.

Tactic composition and sequencing. Tactics can be chained using infix operators.

Two tactics can be combined into one which encapsulates sequential execution of the

originals (THEN : tactic -> tactic -> tactic, often written as >>). Subgoals must

3This cannot give any false results, as generated theorems are tagged as having been cheated.

B.4. SUMMARY OF HOL WORKFLOW 67

be managed carefully – a tactic can generate many subgoals, each of which may need to

be treated differently. THEN applies both tactics to all subgoals – tacticals such as THEN1

(or >-) are more specific (THEN1 applies the left-hand tactic, then solves the first subgoal

fully with the right-hand tactic). Effective use of these is necessary for creating theories,

as they can greatly condense proofs.

Assumption management. Many tacticals exist for selecting assumptions, with type

(thm -> tactic -> tactic): they select an assumption, and apply the provided (thm

-> tactic) function to return a tactic. A common use is to select an assumption and

instantiate some of its quantified variables.

B.3.3 Conversions and rules

Bottom-up proof is possible in HOL using conversions and rules, but it is difficult to

sequence and combine branches of the proof tree. Conversions map terms to theorems

(conv : term -> thm), and rules map theorems to other theorems. A conversion can

be as simple as mapping (t : term) to (` t = t : thm). However for this project,

conversions can be useful to instantiate universally-quantified variables in a general proof,

to specialise to a more specific case. The more general case is easier to prove due to the

more general assumptions, but the specialised case is more pertinent to the compiler

algorithm. This project uses rules to prove properties about the abstract reachability

functions (§ 3.3.3).

B.4 Summary of HOL workflow

The general pattern for HOL theory construction is therefore:

1. Interactively import necessary theories.

2. Interactively set up definitions and types, and state desired theorems in a script file.

3. Interactively prove theorems using tactics and tacticals, operating on the goalstack.

4. Package up the resulting script as a standalone compilation unit (this is required to

be an SML structure).

5. Run Holmake on the script file to resolve dependencies, and compile and execute

the script to return a standalone, reusable theory.

Familiarity with this workflow, in particular with interactivity in Vim, was a necessity

for this project. This was achieved with the help of Anthony Fox and Magnus Myreen

– the limited documentation and plethora of available tools in HOL make it difficult to

approach for a beginner without an experienced guide. Gaining experience through online

tutorials, observation of other proof scripts, supervision with Anthony and Magnus, and

trial and error was necessary to build a repertoire of available tools. This process carried

on throughout the project, and many new tools were discovered even towards its end.

68 APPENDIX B. HOL4

Appendix C

Results of code reduction evaluation

in FlatLang

This appendix contains the raw data obtained from measures of code reduction for the

optimisation in FlatLang (Figure C.1). Eight example programs were used to illustrate

code reduction: implementations of six UNIX tools (cat, diff, echo, grep, patch, and

sort), a simple “hello world“ program, and an implementation of a word count for files.

These implementations are provided as part of the CakeML codebase in the cakeml/

examples/ directory. Each of these was compiled to FlatLang, and then optimised

using the dead code elimination pass written in this project. Five measures of code size

were then use to evaluate the extent to which the optimisation reduced the amount of

code. These measures are as follows:

• Number of top-level declarations. Each declaration in FlatLang is of type

dec, and FlatLang code is a dec list (§ A.2.1). This measure is effectively the

size of that list.

• Expression size. Provided in the CakeML codebase are measures of expression size

for FlatLang expressions – this is the number of constructors required to define the

expression. Expressions can be contained within the value declarations over which

the optimisation acts (§ A.2.1).

• Number of global variable initialisations. The number of (GlobalVarInit

: Op) operations in the code, each of which initialises a global variable. This is

therefore the number of global variables that the code analysis determined to be

reachable (§ 3.2).

• Number of global variable lookups. The number of (GlobalVarLookup : Op)

operations in the code, each looking up the value of a global variable.

• Term size. This is an SML measure rather than a HOL-implemented one. It

represents the size of a HOL term in terms of the number of SML constructors

required to express it.

The full results can be found in Figure C.1. The data clearly shows significant code

reductions for all example programs across all measures.

69

70APPENDIX C. RESULTS OF CODE REDUCTION EVALUATION IN FLATLANG

P
ro

gr
am

N
o.

of
to

p
-l

ev
el

d
ec

la
ra

ti
on

s

(e
ac

h
of

ty
p

e
d
e
c
)

E
x
p
re

ss
io

n
si

ze
N

o.
of

gl
ob

al
va

ri
ab

le

in
it

ia
li
sa

ti
on

s

N
o.

of
gl

ob
al

va
ri

ab
le

lo
ok

u
p
s

T
er

m
si

ze

B
ef

or
e

A
ft

er
%

re
m

ov
ed

B
ef

or
e

A
ft

er
%

re
m

ov
ed

B
ef

or
e

A
ft

er
%

re
m

ov
ed

B
ef

or
e

A
ft

er
%

re
m

ov
ed

B
ef

or
e

A
ft

er
%

re
m

ov
ed

c
a
t

38
0

56
85

%
10

50
93

69
14

94
87

9
86

%
37

1
47

87
%

40
7

91
78

%
48

91
67

46
90

7
90

%

d
i
f
f

39
6

94
76

%
11

82
52

22
33

53
01

5
72

%
38

7
85

78
%

44
2

14
5

67
%

52
73

86
11

05
65

79
%

e
c
h
o

37
7

47
88

%
10

41
62

68
11

08
22

2
89

%
36

8
38

90
%

40
3

64
84

%
48

64
45

37
75

3
92

%

g
r
e
p

47
9

18
6

61
%

21
24

73
15

13
47

70
31

37
%

46
1

16
8

64
%

57
1

27
5

52
%

74
64

38
36

27
13

51
%

p
a
t
c
h

38
9

86
78

%
11

97
99

35
36

42
35

5
70

%
38

0
77

80
%

42
5

13
97

%
52

91
31

12
06

35
77

%

s
o
r
t

38
2

74
81

%
10

92
18

85
24

54
56

0
78

%
37

3
65

83
%

42
4

12
9

70
%

50
40

34
82

71
5

84
%

H
el

lo
w

or
ld

37
7

33
91

%
10

38
33

26
63

43
04

94
%

36
8

24
93

%
39

9
32

92
%

48
57

69
20

78
4

96
%

W
or

d
co

u
n
t

37
9

76
80

%
10

50
81

07
22

33
18

3
79

%
37

0
67

82
%

41
4

12
5

70
%

48
91

48
80

30
5

84
%

F
ig
u
re

C
.1
:

R
aw

re
su

lt
s

of
co

de
re

du
ct

io
n

ev
al

u
at

io
n

of
th

e
de

ad
co

de
el

im
in

at
io

n
op

ti
m

is
at

io
n

in
F
l
a
t
L
a
n
g

.
F

iv
e

m
ea

su
re

s
of

co
de

si
ze

w
er

e
ev

al
u

at
ed

on
th

e
co

de
bo

th
be

fo
re

an
d

af
te

r
th

e
op

ti
m

is
at

io
n

w
as

ap
pl

ie
d,

to
gi

ve
a

pe
rc

en
ta

ge
of

co
de

re
m

ov
ed

.
T

hi
s

w
as

de
te

rm
in

ed
fo

r
ei

gh
t

ex
am

pl
e

pr
og

ra
m

s,
w

hi
ch

ca
n

be
fo

u
n

d
in

th
e

C
ak

eM
L

co
de

ba
se

in
th

e
c
a
k
e
m
l
/
e
x
a
m
p
l
e
s
/

di
re

ct
or

y.
In

al
l

m
ea

su
re

s,
th

e
op

ti
m

is
at

io
n

pa
ss

sh
ow

s
si

gn
ifi

ca
n

t
co

de
re

du
ct

io
n

fo
r

al
l

ex
am

pl
e

pr
og

ra
m

s,
de

m
on

st
ra

ti
n

g
th

e
effi

ca
cy

an
d

u
se

fu
ln

es
s

of

th
e

pa
ss

.

Appendix D

Project Proposal

Computer Science Tripos – Part II – Project Proposal

Implementing and verifying a compiler optimisation

for CakeML

H. R. Kanabar, King’s College

Originator: Dr. Magnus Myreen

16 October 2017

Project Supervisors: Dr. Stephen Kell & Dr. Anthony Fox

Project Advisors: Dr. Magnus Myreen & Dr. Ramana Kumar

Director of Studies: Dr. Timothy Griffin

Project Overseers: Dr. Markus Kuhn & Dr. Peter Sewell

Introduction

This project tackles implementing and verifying global dead code elimination for CakeML,

an open-source functional programming language which is a significant subset of Standard

ML. Its semantics and compiler algorithm are specified in higher-order logic, and verified

with the interactive theorem prover HOL4.

Dead code elimination is a compiler optimisation involving the removal of code which

does not affect the results of the program (known as dead code). This means that code

which will never be executed due to the control flow of the program (known as unreachable

code), or which only affects dead variables (variables that will not be read again), is

not compiled. The optimisation can reduce the size of compiled binaries, preventing

waste of disk space and instruction memory, and can speed up program execution, as

instructions that do not affect observable program behaviour are not executed. Dead

code elimination may also enable further optimisations by simplifying program structure.

The CakeML compilation pipeline transforms source code to machine instructions via

71

72 APPENDIX D. PROJECT PROPOSAL

successive intermediate languages over several compilation passes – elimination of dead

code should occur as early as possible in this pipeline, to avoid the cost of translating it

between the intermediate languages.

As it currently stands, large libraries of CakeML code (known as the basis libraries,

as in Standard ML) are prepended onto any user-written source code before compilation.

This makes the compiler very slow for even the simplest of programs due to the large

amount of code included in these libraries, a large proportion of which may not be used

by a given program. This issue is thus the motivation for the project1.

Once this optimisation has been implemented, its soundness must then be proved – the

optimised and non-optimised compilers must produce semantically equivalent code. This

verification will be carried out using higher-order logic and the interactive theorem prover

HOL4, in the same way that the rest of the language has been proven to be semantics-

perserving. The proof of the optimisation must then be integrated into the existing proofs

for the compiler as a whole.

Starting point

The CakeML open-source GitHub repository2 contains all of the CakeML code. This in-

cludes the specification and semantics of the language, as well as the compiler algorithm,

all specified and verified in higher-order logic using the HOL4 interactive theorem prover.

The compiler algorithm transforms the code from source text to machine code, passing

through twelve successive intermediate languages along the way, and targeting five differ-

ent architectures. The compiler has been proven to be correct – it can be shown that it

transforms CakeML programs into semantically equivalent machine code. CakeML is in

its third main version, and has a fully implemented and verified compiler for its language

specification. Many compiler optimisations have also already been implemented and veri-

fied, and the codebase comes with a library of regression tests to ensure that new changes

are compatible with all prior work. However, the compiler currently prepends the entire

basis library onto all source code it compiles – this is therefore open to optimisation.

CakeML uses HOL4 to verify its compiler algorithm. HOL is an interactive theorem

prover for higher-order logic3, and HOL4 is its most up-to-date version, with an active

community. Currently the entire compiler algorithm has been verified to be correct using

HOL4, so only the work on the new optimisation will require verification.

Resources required

This project will mainly be carried out on my own quad-core (Intel i7-2720QM) laptop,

with 8 GB of RAM and 1 TB of hard-drive, running Windows 10 with an Ubuntu 16.04

LTS dual-boot. Version control will be through GitHub, with automatic synchronisation

1https://github.com/CakeML/cakeml/issues/337
2https://github.com/CakeML/cakeml
3https://hol-theorem-prover.org/

https://github.com/CakeML/cakeml/issues/337
https://github.com/CakeML/cakeml
https://hol-theorem-prover.org/

73

to Google Drive and regular (at least weekly) backups to my own external hard-drive (1

TB).

In addition, the project will require extensive outside assistance from Ramana Kumar

and Magnus Myreen, two members of the CakeML development team – this will mostly

be by email and Slack. Anthony Fox has also agreed to help with HOL setup through

pair-programming and supervision, which will require regular access to the Department of

Computer Science and Technology. Stephen Kell will therefore be acting as a contact point

and proxy supervisor for the project, with Ramana, Magnus, and Anthony providing the

majority of the technical expertise. Stephen will be on hand to help mostly with project

planning and dissertation work.

Work to be done

The overall project can be further broken down into the following sub-projects:

1. Starter Project: dead code elimination in wordLang, an intermediate language in

the middle of the compilation pipeline.

(a) Implement code reachability analysis functions in HOL for wordLang.

(b) Verify the correctness of the abstract reachability function.

(c) (time-permitting) Prove that the deletion of unreachable wordLang functions

preserves semantics.

2. Main project: dead code elimination in flatLang, an intermediate language early

on in the compilation pipeline.

(a) Implement a bottom-up compiler pass for deleting unreachable declarations

in a CakeML program (source programs in CakeML are essentially lists of

declarations).

(b) Verify that the observable semantics is preserved by the new compiler pass.

(c) Integrate the new compiler passes (wordLang and flatLang) into the main

CakeML repository.

Success citeria

The project will be determined to be successful if the following criteria are achieved:

• A global dead code elimination pass is implemented for at least flatLang.

• The implementation of the pass fits into and is part of the latest version of the

CakeML compiler.

• The new compiler pass for wordLang has been proved correct, and its correctness

theorem has been used to update the overall theorem for the existing compiler.

• Simple test cases demonstrate that the new compiler pass is able to remove unused

declarations from the basis library and from user-written code.

74 APPENDIX D. PROJECT PROPOSAL

Possible extensions

If the main aims are achieved, the following extensions will be considered:

1. Verify the optimisation for flatLang. The new compiler pass for flatLang

should be proved correct, and its correctness theorem then used to update the

overall theorem for the existing compiler.

2. Empirically determine the efficiency of the new optimisation(s). The

CakeML development team estimate that both binary size and compilation times

can be reduced by 50% for simple examples that use little of the lengthy basis libary,

if a good global dead code elimination pass is correctly implemented.

3. Verify other optimisation passes for flatLang or wordLang. In flatLang, a

possible optimisation is a global purity analysis pass – this will move pure constant

computations out of loops, turning them into new declarations with fresh names.

Timetable

Planned starting date is 19/10/2017.

1. Michaelmas weeks 3–4: Learn the basics of HOL4, with help from Anthony Fox

and online tutorials. Familiarise with the theory of dead code elimination, and the

CakeML compiler specification.

2. Michaelmas weeks 5–6: Create basic test examples and performance metrics.

Start definitions and proofs of code reachability in wordLang. Implement code

reachability analysis functions in wordLang.

3. Michaelmas weeks 7–8: Finish proving code reachability function correctness.

Prove that deleting unreachable code does not change semantics of wordLang (time-

permitting).

4. Michaelmas vacation: Integrate with existing CakeML codebase, including run-

ning regression tests. Demonstrate efficiency gains made using test examples and

performance metrics. Familiarise with flatLang, including discussion of deadcode

elimination in flatLang with the CakeML development team.

5. Lent weeks 0–2: Write progress report. Begin work on dead code elimination

from flatLang – create definitions and proofs in HOL4.

6. Lent weeks 3–5: Implement compiler pass for dead code elimination in flatLang.

Verify that this preserves semantics.

7. Lent weeks 6–8: Run regression tests from CakeML codebase. Update existing

compiler correctness theorem to take into account the new optimisation pass.

75

8. Easter vacation: Finish integration with CakeML codebase. Work on extension

projects (time-permitting). Write main dissertation chapters.

9. Easter weeks 0–2: Use test cases and examples to illustrate performance gains.

If any extension is complete, generate test cases for this (time-permitting). Finish

drafting dissertation, and submit to supervisor for feedback.

10. Easter weeks 3–4: Continue to test, document, and integrate code. Proof-read

dissertation, then submit to supervisor. Make corrections, and make final submis-

sion.

	Introduction
	Optimising compilers
	Dead code elimination

	Compiler correctness
	Interactive theorem-provers
	CompCert

	CakeML
	Purpose of this project

	Preparation
	HOL4
	Starting point
	Unforeseen limitations of the starting point

	Project planning and practice
	Plan of work
	Third-party tools
	Backups and version control

	Implementation
	Sptrees
	The next-step function
	Basic principles of sptrees
	Implementation and well-formedness
	Sptrees in this project

	Code analysis implementation
	Code analysis in WordLang
	Code analysis in FlatLang

	Reachability analysis
	Specification and reachability relations
	Reachability implementation
	Reachability proofs

	Evaluation
	Evaluation methods
	Proof of correctness
	Proofs of termination
	Proofs of semantic preservation in WordLang
	Proofs of semantic preservation in FlatLang

	Secondary evaluation
	Summary of results

	Conclusion
	Summary of the work completed
	Improvements on the work completed
	Further work

	Bibliography
	Intermediate languages
	WordLang
	Structure of a WordLang program
	Semantics of WordLang

	FlatLang
	Structure of a FlatLang program
	Semantics of FlatLang

	HOL4
	Basic principles of HOL
	Scripts and theories
	The goalstack and interactive proof
	Tactics
	Tacticals
	Conversions and rules

	Summary of HOL workflow

	Results of code reduction evaluation in FlatLang
	Project Proposal

